Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Dis ; 107(3): 820-825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35961017

RESUMO

Wheat sharp eyespot (SES), caused by the soilborne pathogen Rhizoctonia cerealis Van der Hoeven (teleomorph: Ceratobasidium cereale), is a common stem disease of wheat globally. The disease caused a severe and extensive epidemic throughout the Willamette Valley of Oregon in 2014 and has remained one of the most important wheat diseases in this region. However, little was known about the genetics of host resistance to this disease. A recombinant inbred line (RIL) population with 257 lines developed from a cross of Einstein × Tubbs was used to study SES resistance of wheat. The phenotyping was conducted at two locations and in 3 years. Genotyping by sequencing was done by using Illumina HiSeq 3000. Low broad-sense heritability across four environments was obtained. The results of analysis of variance demonstrated that disease severity was significantly different among RILs for the data combined over environments and for one of the individual environments. Four SES resistance quantitative trait loci (QTL) were detected, including QSES-1A, QSES-2B, QSES-6A, and QSES-7A, and explained 5.9, 5.9, 8.8, and 8.3%, respectively, of the phenotypic variance. All four QTL overlapped or are in close proximity with one or more plant defense genes, and could lay the foundation for marker-assisted breeding.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Triticum/genética , Melhoramento Vegetal , Basidiomycota/genética
2.
Plant J ; 86(2): 195-207, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945524

RESUMO

Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.


Assuntos
Triticum/genética , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Mapeamento de Híbridos Radioativos , Análise de Sequência de DNA
3.
Theor Appl Genet ; 128(2): 329-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25432091

RESUMO

KEY MESSAGE: Identification of genome regions linked to Cephalosporium stripe resistance across two populations on chromosome 3BS, 4BS, 5AL, C5BL. Results were compared to a similar previous study. Cephalosporium stripe is a vascular wilt disease of winter wheat (Triticum aestivum L.) caused by the soil-borne fungus Cephalosporium gramineum Nisikado & Ikata. In the USA it is known to be a recurring disease when susceptible cultivars are grown in the wheat-growing region of Midwest and Pacific Northwest. There is no complete resistance in commercial wheat cultivars, although the use of moderately resistant cultivars reduces the disease severity and the amount of inoculum in subsequent seasons. The goal of this study was to detect and to compare chromosomal regions for resistance to Cephalosporium stripe in two winter wheat populations. Field inoculation was performed and Cephalosporium stripe severity was visually scored as percent of prematurely ripening heads (whiteheads) per plot. 'Tubbs'/'NSA-98-0995' and 'Einstein'/'Tubbs', each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 271 and 259 F (5:6) recombinant inbred lines, respectively, were genotyped and phenotyped across four environments. In the quantitative trait loci (QTL) analysis, six and nine QTL were found, explaining in total, around 30 and 50 % of the phenotypic variation in 'Tubbs'/'NSA-98-0995' and 'Einstein'/'Tubbs', respectively. The QTL with the largest effect from both 'NSA-98-0995' and 'Einstein' was on chromosome 5AL.1 and linked to marker gwm291. Several QTL with smaller effects were identified in both populations on chromosomes 5AL, 6BS, and 3BS, along with other QTL identified in just one population. These results indicate that resistance to Cephalosporium stripe in both mapping populations was of a quantitative nature.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Acremonium/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/genética , Ligação Genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
4.
Theor Appl Genet ; 128(7): 1307-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25847212

RESUMO

KEY MESSAGE: Epistasis and genetic background were important influences on expression of stripe rust resistance in two wheat RIL populations, one with resistance conditioned by two major genes and the other conditioned by several minor QTL. Stripe rust is a foliar disease of wheat (Triticum aestivum L.) caused by the air-borne fungus Puccinia striiformis f. sp. tritici and is present in most regions around the world where commercial wheat is grown. Breeding for durable resistance to stripe rust continues to be a priority, but also is a challenge due to the complexity of interactions among resistance genes and to the wide diversity and continuous evolution of the pathogen races. The goal of this study was to detect chromosomal regions for resistance to stripe rust in two winter wheat populations, 'Tubbs'/'NSA-98-0995' (T/N) and 'Einstein'/'Tubbs' (E/T), evaluated across seven environments and mapped with diversity array technology and simple sequence repeat markers covering polymorphic regions of ≈1480 and 1117 cM, respectively. Analysis of variance for phenotypic data revealed significant (P < 0.01) genotypic differentiation for stripe rust among the recombinant inbred lines. Results for quantitative trait loci/locus (QTL) analysis in the E/T population indicated that two major QTL located in chromosomes 2AS and 6AL, with epistatic interaction between them, were responsible for the main phenotypic response. For the T/N population, eight QTL were identified, with those in chromosomes 2AL and 2BL accounting for the largest percentage of the phenotypic variance.


Assuntos
Resistência à Doença/genética , Epistasia Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/genética , Meio Ambiente , Genes de Plantas , Genética Populacional , Genótipo , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia
5.
Proc Natl Acad Sci U S A ; 109(50): 20543-8, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184965

RESUMO

Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.


Assuntos
DNA Glicosilases/genética , Genes de Plantas , Hordeum/enzimologia , Hordeum/genética , Proteínas de Plantas/genética , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Doença Celíaca/dietoterapia , Mapeamento Cromossômico , Clonagem Molecular , Ilhas de CpG , DNA Glicosilases/química , DNA Glicosilases/metabolismo , DNA de Plantas/genética , Dieta Livre de Glúten , Proteínas Alimentares/efeitos adversos , Variação Genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/efeitos adversos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Prolaminas/genética , Prolaminas/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Triticum/efeitos adversos
6.
Theor Appl Genet ; 124(1): 207-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21959906

RESUMO

Kernel hardness or texture, used to classify wheat (Triticum aestivum L.) into soft and hard classes, is a major determinant of milling and baking quality. Wheat genotypes in the soft class that are termed 'extra-soft' (with kernel hardness in the lower end of the spectrum) have been associated with superior end-use quality. In order to better understand the relationship between kernel hardness, milling yield, and various agronomic traits, we performed quantitative trait mapping using a recombinant inbred line population derived from a cross between a common soft wheat line and a genotype classified as an 'extra-soft' line. A total of 47 significant quantitative trait loci (QTL) (LOD ≥ 3.0) were identified for nine traits with the number of QTL affecting each trait ranging from three to nine. The percentage of phenotypic variance explained by these QTL ranged from 3.7 to 50.3%. Six QTL associated with kernel hardness and break flour yield were detected on chromosomes 1BS, 4BS, 5BS, 2DS, 4DS, and 5DL. The two most important QTL were mapped onto orthologous regions on chromosomes 4DS (Xbarc1118-Rht-D1) and 4BS (Xwmc617-Rht-B1). These results indicated that the 'extra-soft' characteristic was not controlled by the Hardness (Ha) locus on chromosome 5DS. QTL for eight agronomic traits occupied two genomic regions near semi-dwarf genes Rht-D1 on chromosome 4DS and Rht-B1 on chromosome 4BS. The clustering of these QTL is either due to the pleiotropic effects of single genes or tight linkage of genes controlling these various traits.


Assuntos
Cruzamentos Genéticos , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Genótipo , Endogamia , Fenótipo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/anatomia & histologia , Triticum/metabolismo
7.
Theor Appl Genet ; 122(7): 1339-49, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21258997

RESUMO

Cephalosporium stripe, caused by Cephalosporium gramineum, can cause severe loss of wheat (Triticum aestivum L.) yield and grain quality and can be an important factor limiting adoption of conservation tillage practices. Selecting for resistance to Cephalosporium stripe is problematic; however, as optimum conditions for disease do not occur annually under natural conditions, inoculum levels can be spatially heterogeneous, and little is known about the inheritance of resistance. A population of 268 recombinant inbred lines (RILs) derived from a cross between two wheat cultivars was characterized using field screening and molecular markers to investigate the inheritance of resistance to Cephalosporium stripe. Whiteheads (sterile heads caused by pathogen infection) were measured on each RIL in three field environments under artificially inoculated conditions. A linkage map for this population was created based on 204 SSR and DArT markers. A total of 36 linkage groups were resolved, representing portions of all chromosomes except for chromosome 1D, which lacked a sufficient number of polymorphic markers. Quantitative trait locus (QTL) analysis identified seven regions associated with resistance to Cephalosporium stripe, with approximately equal additive effects. Four QTL derived from the more susceptible parent (Brundage) and three came from the more resistant parent (Coda), but the cumulative, additive effect of QTL from Coda was greater than that of Brundage. Additivity of QTL effects was confirmed through regression analysis and demonstrates the advantage of accumulating multiple QTL alleles to achieve high levels of resistance.


Assuntos
Acremonium/patogenicidade , Imunidade Inata , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Acremonium/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , DNA de Plantas/isolamento & purificação , Genes de Plantas , Marcadores Genéticos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Polimorfismo Genético , Triticum/imunologia , Triticum/microbiologia
8.
Plants (Basel) ; 10(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803625

RESUMO

Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a worldwide disease of wheat that causes devastating crop losses. Resistant cultivars have been developed over the last 40 years that have significantly reduced the economic impact of the disease on growers, but in heavy infection years it is mostly controlled through the intensive application of fungicides. The Pacific Northwest of the United States has an ideal climate for stripe rust and has one of the most diverse race compositions in the country. This has resulted in many waves of epidemics that have overcome most of the resistance genes traditionally used in elite germplasm. The best way to prevent high yield losses, reduce production costs to growers, and reduce the heavy application of fungicides is to pyramid multiple stripe rust resistance genes into new cultivars. Using genotyping-by-sequencing, we identified 4662 high quality variant positions in a recombinant inbred line population of 196 individuals derived from a cross between Skiles, a highly resistant winter wheat cultivar, and Goetze, a moderately to highly susceptible winter wheat cultivar, both developed at Oregon State University. A subsequent genome wide association study identified two quantitative trait loci (QTL) on chromosomes 3B and 3D within the predicted locations of stripe rust resistance genes. Resistance QTL, when combined together, conferred high levels of stripe rust resistance above the level of Skiles in some locations, indicating that these QTL would be important additions to future breeding efforts of Pacific Northwest winter wheat cultivars.

9.
Front Plant Sci ; 11: 769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587597

RESUMO

The genetic engineering method CRISPR has been touted as an efficient, inexpensive, easily used, and targeted genetic modification technology that is widely suggested as having the potential to solve many of the problems facing agriculture now and in the future. Like all new technologies, however, it is not without challenges. One of the most difficult challenges to anticipate and detect is gene targets that are inaccessible due to the chromatin state at their specific location. There is currently no way to predict this during the process of designing a sgRNA target, and the only way to detect this issue before spending time and resources on full transformations is to test the cleavage ability of the sgRNA in vivo. In wheat, this is possible using protoplast isolation and PEG transformation with Cas9 ribonucleoprotein complexes. Therefore, we have developed a streamlined protocol for testing the accessibility of sgRNA targets in wheat. The first steps involve digesting wheat leaf tissue in an enzymatic solution and then isolating viable protoplasts using filters and a sucrose gradient. The protoplasts are then transformed using Cas9 ribonucleoprotein complexes via PEG-mediated transformation. DNA is isolated from the CRISPR-Cas-edited protoplasts and PCR is performed to amplify the gene target region. The PCR product is then used to assess the editing efficiency of the chosen sgRNA using Sanger sequencing. This simplified protocol for the isolation and transformation of wheat protoplast cells using Cas9 ribonucleoprotein complexes streamlines CRISPR transformation projects by allowing for a fast and easy test of sgRNA accessibility in vivo.

10.
Pest Manag Sci ; 73(8): 1593-1597, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27887035

RESUMO

BACKGROUND: Wheat (Triticum aestivum) (ABD) and jointed goatgrass (Aegilops cylindrica) (CD) can cross and produce hybrids that can backcross to either parent. Such backcrosses can result in progeny with chromosomes and/or chromosome segments retained from wheat. Thus, a herbicide resistance gene could migrate from wheat to jointed goatgrass. In theory, the risk of gene migration from herbicide-resistant wheat to jointed goatgrass is more likely if the gene is located on the D genome and less likely if the gene is located on the A or B genome of wheat. RESULTS: BC1 populations (jointed goatgrass as a recurrent parent) were analyzed for chromosome numbers and transgene transmission rates under sprayed and non-sprayed conditions. Transgene retention in the non-sprayed BC1 generation for the A, B and D genomes was 84, 60 and 64% respectively. In the sprayed populations, the retention was 81, 59 and 74% respectively. CONCLUSION: The gene transmission rates were higher than the expected 50% or less under sprayed and non-sprayed conditions, possibly owing to meiotic chromosome restitution and/or chromosome non-disjunction. Such high transmission rates in the BC1 generation negates the benefits of gene placement for reducing the potential of gene migration from wheat to jointed goatgrass. © 2016 Society of Chemical Industry.


Assuntos
Genes de Plantas/genética , Resistência a Herbicidas/genética , Hibridização Genética , Poaceae/genética , Transgenes/genética , Triticum/genética , Triticum/fisiologia , Cromossomos de Plantas/genética
11.
Biotechniques ; 32(3): 560, 562-4, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11911660

RESUMO

A simple, nondestructive PCR-based screening method has been developed for identifying putative transgenic soft white winter wheat (Triticum aestivum L.) carrying the coat protein gene of wheat streak mosaic virus. Removal of the endosperm end of individual seed provided sufficient material for DNA extraction and PCR. DNA from seed is more free of the secondary, metabolites found in leaf tissue that can inhibit both PCR and restriction digests required for Southern analysis. The half-seed PCR assay has comparable accuracy to the leaf-tissue PCR assay and hence can be used as an accurate and rapid method for identifying transformed lines before planting. Germination of the remaining seed portion showed germination rates comparable to whole-seed controls. A slight delay in growth from the first-leaf through the first-tiller stage was observed in the half-seed-derived plants, as compared to plants grown from whole seed.


Assuntos
DNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Transformação Genética/genética , Triticum/genética , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Sementes/genética
12.
PLoS One ; 9(3): e91758, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642574

RESUMO

A recombinant inbred line (RIL) mapping population developed from a cross between winter wheat (Triticum aestivum L.) cultivars Coda and Brundage was evaluated for reaction to stripe rust (caused by Puccinia striiformis f. sp. tritici). Two hundred and sixty eight RIL from the population were evaluated in replicated field trials in a total of nine site-year locations in the U.S. Pacific Northwest. Seedling reaction to stripe rust races PST-100, PST-114 and PST-127 was also examined. A linkage map consisting of 2,391 polymorphic DNA markers was developed covering all chromosomes of wheat with the exception of 1D. Two QTL on chromosome 1B were associated with adult plant and seedling reaction and were the most significant QTL detected. Together these QTL reduced adult plant infection type from a score of seven to a score of two reduced disease severity by an average of 25% and provided protection against race PST-100, PST-114 and PST-127 in the seedling stage. The location of these QTL and the race specificity provided by them suggest that observed effects at this locus are due to a complementation of the previously known but defeated resistances of the cultivar Tres combining with that of Madsen (the two parent cultivars of Coda). Two additional QTL on chromosome 3B and one on 5B were associated with adult plant reaction only, and a single QTL on chromosome 5D was associated with seedling reaction to PST-114. Coda has been resistant to stripe rust since its release in 2000, indicating that combining multiple resistance genes for stripe rust provides durable resistance, especially when all-stage resistance genes are combined in a fashion to maximize the number of races they protect against. Identified molecular markers will allow for an efficient transfer of these genes into other cultivars, thereby continuing to provide excellent resistance to stripe rust.


Assuntos
Cromossomos de Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Imunidade Vegetal/genética , Plântula/genética , Triticum/genética , Basidiomycota/fisiologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Marcadores Genéticos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Plântula/imunologia , Plântula/microbiologia , Triticum/imunologia , Triticum/microbiologia
13.
Theor Appl Genet ; 116(2): 261-70, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17952400

RESUMO

Wheat is prone to strawbreaker foot rot (eyespot), a fungal disease caused by Oculimacula yallundae and O. acuformis. The most effective source of genetic resistance is Pch1, a gene derived from Aegilops ventricosa. The endopeptidase isozyme marker allele Ep-D1b, linked to Pch1, has been shown to be more effective for tracking resistance than DNA-based markers developed to date. Therefore, we sought to identify a candidate gene for Ep-D1 as a basis for a DNA-based marker. Comparative mapping suggested that the endopeptidase loci Ep-D1 (wheat), enp1 (maize), and Enp (rice) were orthologous. Since the product of the maize endopeptidase locus enp1 has been shown to exhibit biochemical properties similar to oligopeptidase B purified from E. coli, we reasoned that Ep-D1 may also encode an oligopeptidase B. Consistent with this hypothesis, a sequence-tagged-site (STS) marker, Xorw1, derived from an oligopeptidase B-encoding wheat expressed-sequence-tag (EST) showed complete linkage with Ep-D1 and Pch1 in a population of 254 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Coda and Brundage. Two other STS markers, Xorw5 and Xorw6, and three microsatellite markers (Xwmc14, Xbarc97, and Xcfd175) were also completely linked to Pch1. On the other hand, Xwmc14, Xbarc97, and Xcfd175 showed recombination in the W7984 x Opata85 RIL population suggesting that recombination near Pch1 is reduced in the Coda/Brundage population. In a panel of 44 wheat varieties with known eyespot reactions, Xorw1, Xorw5, and Xorw6 were 100% accurate in predicting the presence or absence of Pch1 whereas Xwmc14, Xbarc97, and Xcfd175 were less effective. Thus, linkage mapping and a germplasm survey suggest that the STS markers identified here should be useful for indirect selection of Pch1.


Assuntos
Ascomicetos , Endopeptidases/genética , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Sitios de Sequências Rotuladas , Triticum/enzimologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Triticum/genética
14.
Theor Appl Genet ; 114(1): 177-86, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17058103

RESUMO

Imidazolinone-resistant winter wheat (Triticum aestivum L.) is being commercialized in the USA. This technology allows wheat growers to selectively control jointed goatgrass (Aegilops cylindrica Host), a weed that is especially problematic because of its close genetic relationship with wheat. However, the potential movement of the imidazolinone-resistance gene from winter wheat to jointed goatgrass is a concern. Winter wheat and jointed goatgrass have the D genome in common and can hybridize and backcross under natural field conditions. Since the imidazolinone-resistance gene (Imi1) is located on the D genome, it is possible for resistance to be transferred to jointed goatgrass via hybridization and backcrossing. To study the potential for gene movement, BC(2)S(2) plants were produced artificially using imidazolinone-resistant winter wheat (cv. FS-4) as the female parent and a native jointed goatgrass collection as the male recurrent parent. FS-4, the jointed goatgrass collection, and 18 randomly selected BC(2)S(2) populations were treated with imazamox. The percentage of survival was 100% for the FS-4, 0% for the jointed goatgrass collection and 6 BC(2)S(2) populations, 40% or less for 2 BC(2)S(2) populations, and 50% or greater for the remaining 10 BC(2)S(2) populations. Chromosome counts in BC(2)S(3) plants showed a restoration of the chromosome number of jointed goatgrass, with four out of four plants examined having 28 chromosomes. Sequencing of AHASL1D in BC(2)S(3) plants derived from BC(2)S(2)-6 revealed the sexual transmission of Imi1 from FS-4 to jointed goatgrass. Imi1 conferred resistance to the imidazolinone herbicide imazamox, as shown by the in vitro assay for acetohydroxyacid synthase (AHAS) activity.


Assuntos
Genes de Plantas , Resistência a Herbicidas/genética , Imidazóis/farmacologia , Poaceae/genética , Triticum/genética , Sequência de Aminoácidos , Cromossomos de Plantas , Hibridização Genética , Dados de Sequência Molecular , Alinhamento de Sequência , Triticum/efeitos dos fármacos , Triticum/fisiologia
15.
Theor Appl Genet ; 111(3): 561-72, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15986256

RESUMO

Aegilops cylindrica Host (2n = 4x = 28, genome CCDD) is an allotetraploid formed by hybridization between the diploid species Ae. tauschii Coss. (2n = 2x = 14, genome DD) and Ae. markgrafii (Greuter) Hammer (2n = 2x = 14, genome CC). Previous research has shown that Ae. tauschii contributed its cytoplasm to Ae. cylindrica. However, our analysis with chloroplast microsatellite markers showed that 1 of the 36 Ae. cylindrica accessions studied, TK 116 (PI 486249), had a plastome derived from Ae. markgrafii rather than Ae. tauschii. Thus, Ae. markgrafii has also contributed its cytoplasm to Ae. cylindrica. Our analysis of chloroplast and nuclear microsatellite markers also suggests that D-type plastome and the D genome in Ae. cylindrica were closely related to, and were probably derived from, the tauschii gene pool of Ae. tauschii. A determination of the likely source of the C genome and the C-type plastome in Ae. cylindrica was not possible.


Assuntos
Núcleo Celular/genética , Cloroplastos , Variação Genética , Genoma de Planta , Repetições de Microssatélites , Poaceae/classificação , Poaceae/genética , Alelos , Cromossomos de Plantas , DNA de Plantas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA