Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1628-1645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813696

RESUMO

BACKGROUND: Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS: We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS: Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS: We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.


Assuntos
Tecido Adiposo , Doença da Artéria Coronariana , Pericárdio , Transcriptoma , Humanos , Pericárdio/metabolismo , Pericárdio/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/metabolismo , Idoso , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Adipócitos/metabolismo , Adipócitos/patologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/cirurgia , Perfilação da Expressão Gênica/métodos , Estudos de Casos e Controles , Ponte de Artéria Coronária , Análise de Célula Única , Macrófagos/metabolismo , Macrófagos/patologia , Redes Reguladoras de Genes , Tecido Adiposo Epicárdico
2.
BMC Cardiovasc Disord ; 23(1): 448, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697243

RESUMO

BACKGROUND: The development of new-onset atrial fibrillation (NOAF) after acute myocardial infarction (AMI) is a clinical complication that requires a better understanding of the causative risk factors. This study aimed to explore the risk factors and the expression and function of miR-1 and miR-133a in new atrial fibrillation after AMI. METHODS: We collected clinical data from 172 patients with AMI treated with emergency percutaneous coronary intervention (PCI) between October 2021 and October 2022. Independent predictors of NOAF were determined using binary logistic univariate and multivariate regression analyses. The predictive value of NOAF was assessed using the area under the receiver operating characteristic (ROC) curve for related risk factors. In total, 172 venous blood samples were collected preoperatively and on the first day postoperatively; the expression levels of miR-1 and miR-133a were determined using the polymerase chain reaction. The clinical significance of miR-1 and miR-133a expression levels was determined by Spearman correlation analysis. RESULTS: The Glasgow prognostic score, left atrial diameter, and infarct area were significant independent risk factors for NOAF after AMI. We observed that the expression levels of miR-1 and miR-133a were significantly higher in the NOAF group than in the non-NOAF group. On postoperative day 1, strong associations were found between miR-133a expression levels and the neutrophil ratio and between miR-1 expression levels and an increased left atrial diameter. CONCLUSIONS: Our findings indicate that the mechanism of NOAF after AMI may include an inflammatory response associated with an increased miR-1-related mechanism. Conversely, miR-133a could play a protective role in this clinical condition.


Assuntos
Apêndice Atrial , Fibrilação Atrial , MicroRNAs , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , MicroRNAs/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Intervenção Coronária Percutânea/efeitos adversos
3.
J Med Internet Res ; 25: e45662, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227772

RESUMO

Although randomized controlled trials (RCTs) are the gold standard for establishing the efficacy and safety of a medical treatment, real-world evidence (RWE) generated from real-world data has been vital in postapproval monitoring and is being promoted for the regulatory process of experimental therapies. An emerging source of real-world data is electronic health records (EHRs), which contain detailed information on patient care in both structured (eg, diagnosis codes) and unstructured (eg, clinical notes and images) forms. Despite the granularity of the data available in EHRs, the critical variables required to reliably assess the relationship between a treatment and clinical outcome are challenging to extract. To address this fundamental challenge and accelerate the reliable use of EHRs for RWE, we introduce an integrated data curation and modeling pipeline consisting of 4 modules that leverage recent advances in natural language processing, computational phenotyping, and causal modeling techniques with noisy data. Module 1 consists of techniques for data harmonization. We use natural language processing to recognize clinical variables from RCT design documents and map the extracted variables to EHR features with description matching and knowledge networks. Module 2 then develops techniques for cohort construction using advanced phenotyping algorithms to both identify patients with diseases of interest and define the treatment arms. Module 3 introduces methods for variable curation, including a list of existing tools to extract baseline variables from different sources (eg, codified, free text, and medical imaging) and end points of various types (eg, death, binary, temporal, and numerical). Finally, module 4 presents validation and robust modeling methods, and we propose a strategy to create gold-standard labels for EHR variables of interest to validate data curation quality and perform subsequent causal modeling for RWE. In addition to the workflow proposed in our pipeline, we also develop a reporting guideline for RWE that covers the necessary information to facilitate transparent reporting and reproducibility of results. Moreover, our pipeline is highly data driven, enhancing study data with a rich variety of publicly available information and knowledge sources. We also showcase our pipeline and provide guidance on the deployment of relevant tools by revisiting the emulation of the Clinical Outcomes of Surgical Therapy Study Group Trial on laparoscopy-assisted colectomy versus open colectomy in patients with early-stage colon cancer. We also draw on existing literature on EHR emulation of RCTs together with our own studies with the Mass General Brigham EHR.


Assuntos
Neoplasias do Colo , Registros Eletrônicos de Saúde , Humanos , Algoritmos , Informática , Projetos de Pesquisa
4.
Genet Med ; 24(12): 2544-2554, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36194209

RESUMO

PURPOSE: Early detection and pathogenicity interpretation of disease-associated variants are crucial but challenging in molecular diagnosis, especially for insidious and life-threatening diseases, such as heritable thoracic aortic aneurysm and dissection (HTAAD). In this study, we developed HTAADVar, an unbiased and fully automated system for the molecular diagnosis of HTAAD. METHODS: We developed HTAADVar (http://htaadvar.fwgenetics.org) under the American College of Medical Genetics and Genomics/Association for Molecular Pathology framework, with optimizations based on disease- and gene-specific knowledge, expert panel recommendations, and variant observations. HTAADVar provides variant interpretation with a self-built database through the web server and the stand-alone programs. RESULTS: We constructed an expert-reviewed database by integrating 4373 variants in HTAAD genes, with comprehensive metadata curated from 697 publications and an in-house study of 790 patients. We further developed an interpretation system to assess variants automatically. Notably, HTAADVar showed a multifold increase in performance compared with public tools, reaching a sensitivity of 92.64% and specificity of 70.83%. The molecular diagnostic yield of HTAADVar among 790 patients (42.03%) also matched the clinical data, independently demonstrating its good performance in clinical application. CONCLUSION: HTAADVar represents the first fully automated system for accurate variant interpretation for HTAAD. The framework of HTAADVar could also be generalized for the molecular diagnosis of other genetic diseases.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Humanos , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/genética , Genômica , Patologia Molecular , Testes Genéticos , Variação Genética/genética
5.
Phys Chem Chem Phys ; 23(14): 8241-8245, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33875991

RESUMO

Tungstic oxide (WO3) is a promising visible-light-responsive photoanode material, but it has poor charge transport and collection properties. In this study, a WO3/BiFeO3 core/shell photoanode (WO3/BFO) with enhanced photoelectrochemical (PEC) performance was successfully prepared using a facile spin-coating method. The optimal WO3/BFO shows an excellently enhanced and stable photocurrent density of ∼2.83 mA cm-2 at 0.6 V vs. Ag/AgCl, which is ∼244% more than WO3 under AM 1.5 illumination. The results of Mott-Schottky tests, intensity modulated photoelectrochemical spectroscopy and transient photocurrent decay indicated that the BFO ferroelectric nanolayer significantly enhances the charge density of the WO3/BFO, and improves its charge transport and separation property and charge lifetime, which could be the reason for the enhanced PEC activity of WO3/BFO.

6.
Environ Sci Technol ; 52(24): 14371-14380, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30424598

RESUMO

Oxygen-doped graphitic carbon nitride (O-CN) was fabricated via a facile thermal polymerization method using urea and oxalic acid dihydrate as the graphitic carbon nitride precursor and oxygen source, respectively. Experimental and theoretical results revealed that oxygen doping preferentially occurred on the two-coordinated nitrogen positions, which create the formation of low and high electron density areas resulting in the electronic structure modulation of O-CN. As a result, the resultant O-CN exhibits enhanced catalytic activity and excellent long-term stability for peroxymonosulfate (PMS) activation toward the degradation of organic pollutants. The O-CN with modulated electronic structure enables PMS oxidation over the electron-deficient C atoms for the generation of singlet oxygen (1O2) and PMS reduction around the electron-rich O dopants for the formation of hydroxyl radical (•OH) and sulfate radical (SO4•-), in which 1O2 is the major reactive oxygen species, contributing to the selective reactivity of the O-CN/PMS system. Our findings not only propose a novel PMS activation mechanism in terms of simultaneous PMS oxidation and reduction for the production of nonradical and radical species but also provide a valuable insight for the development of efficient metal-free catalysts through nonmetal doping toward the persulfate-based environmental cleanup.


Assuntos
Poluentes Ambientais , Grafite , Nitrilas , Oxigênio , Peróxidos
7.
Epilepsy Behav ; 83: 44-49, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653337

RESUMO

OBJECTIVE: The objective of this study was to apply diffusion tensor imaging (DTI) to investigate microstructural abnormalities in temporal lobe epilepsy (TLE) with and without hippocampal sclerosis (HS). MATERIALS: Totally, 19 patients with TLE with HS and 23 patients with TLE without HS were included. Fiber tracking fibers focused on the parahippocampal cingulum (PHC), cingulate gyrus (CG), and fornix (FORX). Fractional anisotropy (FA) and mean diffusivity (MD) values were obtained, and hippocampal volumes were measured. RESULTS: Compared with the contralateral side, for the HS group, FA values of ipsilateral CG and FORX were significantly decreased, and MD value of ipsilateral hippocampus was significantly higher, with significantly declined ipsilateral hippocampal volume. For the MRI-Neg group, FA values of ipsilateral CG, FORX, and hippocampus were significantly decreased, while MD values of ipsilateral FORX and hippocampus were significantly higher. Moreover, for the MRI-Neg group, the FA value of contralateral PHC was significantly decreased. Fractional anisotropy values of ipsilateral CG for both groups were significantly decreased, and FA value of ipsilateral FORX for the HS group was significantly decreased. Furthermore, MD value of ipsilateral hippocampus for the HS group was significantly higher, and FA value of ipsilateral hippocampus for the MRI-Neg group was significantly decreased. In addition, ipsilateral hippocampal volumes for both groups were significantly decreased. Fractional anisotropy value of ipsilateral CG and FORX had a correlation with the seizure frequency. CONCLUSION: Diffusion tensor imaging can detect microstructural abnormalities in brain from patients with TLE, which might be hard to find with routine Magnetic Resonance Imaging (MRI) sequence.


Assuntos
Imagem de Tensor de Difusão/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Epilepsia do Lobo Temporal/patologia , Feminino , Substância Cinzenta/patologia , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Esclerose/diagnóstico por imagem , Esclerose/patologia , Substância Branca/patologia , Adulto Jovem
8.
Environ Sci Technol ; 51(21): 12965-12971, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28971667

RESUMO

A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H2S and simultaneous electricity production. The key ideas were the self-bias function between a WO3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I-/I3-. Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I- was transformed into I3- by photoholes or hydroxyl radicals, H2S was oxidized to S by I3-, and I3- was then reduced to I-. Meanwhile, H+ was efficiently converted to H2 in the photocathode region. In the system, H2S was uniquely oxidized to sulfur but not to polysulfide (Sxn-) because of the mild oxidation capacity of I3-. High recovery rates for S and H2 were obtained up to ∼1.04 mg h-1 cm-1 and ∼0.75 mL h-1 cm-1, respectively, suggesting that H2S was completely converted into H2 and S. In addition, the output power density of the system reached ∼0.11 mW cm-2. The proposed PEC-H2S system provides a self-sustaining, energy-saving method for simultaneous H2S treatment and energy recovery.


Assuntos
Eletricidade , Sulfeto de Hidrogênio , Oxirredução
9.
Epilepsy Behav ; 64(Pt A): 233-238, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27764734

RESUMO

OBJECTIVE: The objective of this study was to estimate the risk of a seizure relapse and the high-risk period of recurrence after antiepileptic drug (AED) withdrawal and to determine the predictive factors for a seizure relapse in adult patients with focal epilepsy who were seizure-free for more than 2years. METHODS: Using the Wenzhou Epilepsy Follow-Up Registry Database, 200 adult patients with focal epilepsy were recruited, who were undergoing follow-up, met the inclusion criteria of this study, were seizure-free for more than 2years, began withdrawing between June 2003 and June 2014, and were followed up prospectively for at least 1year or until a seizure relapse. The risk of recurrence and the time to seizure relapse were analyzed by the Kaplan-Meier method, and the predictive factors were identified by the Cox proportional hazard regression model. RESULT: A total of 99 patients had an unprovoked relapse during the follow-up period. The relapse rate was 49.5%, and each year, the recurrence probability of 12, 24, 36, 48, 60, 72, and 84months after AED withdrawal was 24.0%, 20.4%, 8.3%, 2.7%, 4.6%, 0.97%, and 0.98%, respectively. The two independent risk factors for recurrence after withdrawal in adult patients with focal epilepsy were a longer duration of active epilepsy and a shorter seizure-free period before withdrawal. CONCLUSION: The high-risk period of a seizure relapse in adult patients with focal epilepsy is the first 2years after withdrawal, and beyond 5years after withdrawal, seizures rarely relapse (relapse rate<1%). A seizure-free period for less than 4years before withdrawal is a predictive factor of risk for seizure recurrence after AED withdrawal in adult patients with focal epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Convulsões/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Sistema de Registros , Fatores de Risco , Fatores de Tempo , Suspensão de Tratamento , Adulto Jovem
10.
J Colloid Interface Sci ; 656: 233-240, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989056

RESUMO

Persistent photocatalysis has garnered significant attention due to its ability to sustain catalytic activity in dark by storing electrons. However, the practical application of persistent photocatalysis is hindered by limited electron storage capacity. Herein, we synthesized and demonstrated that Ti3C2/TiO2/Ag persistent photocatalyst has good electron storage capability. The electron storage capacity of Ti3C2/TiO2/Ag is up to 0.125 µmol/mg, which is 2.5 times that of Ti3C2/TiO2. The enhanced electron storage capacity resulted in improved dark-reaction activity because more electrons react with oxygen to form more radicals, as evidenced by degradation experiments of various organics. Especially, persistent photocatalytic degradation of tetracycline hydrochloride by Ti3C2/TiO2/Ag was achieved under natural outdoor conditions (from 2:00p.m. to 8:00p.m.). Additionally, the aid of oxidants such as peroxymonosulfate (PMS) can further improve the dark-reaction activity. TiO2/Ti3C2/Ag/PMS system exhibits excellent efficacy in removing tetracycline hydrochloride, oxytetracycline, rhodamine b, methyl orange, and methylene blue, with removal rates reaching 79.5 %, 81.4 %, 98.9 %, 99.1 %, and 99.2 %, respectively (15 min of light-reaction and 45 min of dark-reaction). This work provides a new strategy to enhance electron storage capacity and demonstrates that decoupling of light-reaction and dark-reaction may provide a new opportunity for photocatalytic removal of pollutants around the clock.

11.
Biotechnol J ; 19(4): e2300723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622797

RESUMO

Polyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU. GatA250 degraded self-synthesized thermoplastic PU film and postconsumption foam with degradation efficiency of 8.17% and 4.29%, respectively. During the degradation, the film released 14.8 µm 4,4'-methylenedianiline (MDA), but 1,4-butanediol (BDO) and adipic acid (AA) were not released. Our findings indicated that GatA250 only cleaved urethane bonds in PU, and the degradation efficiency was extremely low. Hence, we introduced the cutinase LCC, which possesses hydrolytic activity on the ester bonds in PU, and then used both enzymes simultaneously to degrade the polyester-PU. The combined system (LCC-GatA250) had higher degradation efficiency for the degradation of PU film (42.2%) and foam (13.94%). The combined system also showed a 1.80 time increase in the production of the monomer MDA, and a 1.23 and 3.62 times increase in the production of AA and BDO, respectively, compared to their production recorded after treatment with only GatA250 or LCC. This study provides valuable insights into PU pollution control and also proposes applicable solutions to manage PU wastes through bio-recycling.


Assuntos
Compostos de Anilina , Hidrolases de Éster Carboxílico , Poliésteres , Poliuretanos , Poliésteres/química , Amidoidrolases
12.
Sci Total Environ ; 928: 172353, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614351

RESUMO

This study addresses the energy-intensive nature of conventional wastewater treatment processes and proposes a solution through the development of a green, low-energy, and multifunctional wastewater treatment technology. The research focuses on a multifunctional self-driven photoelectrocatalytic (PEC) system, exploring its four-in-one applications in eliminating organic pollutants, reducing U(VI), generating electrical energy, and disinfecting pathogenic microorganisms. A TiO2-decorated carbon felt (CF@TiO2) cathode is synthesized to enhance interfacial charge transfer, with TiO2 coating improving surface binding sites (edge TiO and adsorbed -OH) for UO22+ adsorption and reduction. The self-driven PEC system, illuminated solely with simulated sunlight, exhibits remarkable efficiency in removing nearly 100 % of uranium within 0.5 h and simultaneously degrading 99.9 % of sulfamethoxazole (SMX) within 1.5 h, all while generating a maximum power output density (Pmax) of approximately 1065 µW·cm-2. The system demonstrates significant anti-interference properties across a wide pH range and coexisting ions. Moreover, 49.4 % of the fixed uranium on the cathode is reduced into U(IV) species, limiting its migration. The self-driven PEC system also excels in detoxifying various toxic organic compounds, including tetracycline, chlortetracycline, and oxytetracycline, and exhibits exceptional sterilization ability by disinfecting nearly 100 % of Escherichia coli within 0.5 h. This work presents an energy-saving, sustainable, and easily recyclable wastewater purification system with four-in-one capabilities, relying solely on sunlight for operation.


Assuntos
Desinfecção , Urânio , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Desinfecção/métodos , Purificação da Água/métodos , Poluentes Químicos da Água , Águas Residuárias/química , Bactérias/efeitos dos fármacos , Catálise
13.
Adv Sci (Weinh) ; 11(22): e2400444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552156

RESUMO

Aortic root aneurysm is a potentially life-threatening condition that may lead to aortic rupture and is often associated with genetic syndromes, such as Marfan syndrome (MFS). Although studies with MFS animal models have provided valuable insights into the pathogenesis of aortic root aneurysms, this understanding of the transcriptomic and epigenomic landscape in human aortic root tissue remains incomplete. This knowledge gap has impeded the development of effective targeted therapies. Here, this study performs the first integrative analysis of single-nucleus multiomic (gene expression and chromatin accessibility) and spatial transcriptomic sequencing data of human aortic root tissue under healthy and MFS conditions. Cell-type-specific transcriptomic and cis-regulatory profiles in the human aortic root are identified. Regulatory and spatial dynamics during phenotypic modulation of vascular smooth muscle cells (VSMCs), the cardinal cell type, are delineated. Moreover, candidate key regulators driving the phenotypic modulation of VSMC, such as FOXN3, TEAD1, BACH2, and BACH1, are identified. In vitro experiments demonstrate that FOXN3 functions as a novel key regulator for maintaining the contractile phenotype of human aortic VSMCs through targeting ACTA2. These findings provide novel insights into the regulatory and spatial dynamics during phenotypic modulation in the aneurysmal aortic root of humans.


Assuntos
Fenótipo , Humanos , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Músculo Liso Vascular/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Miócitos de Músculo Liso/metabolismo , Transcriptoma/genética , Aorta/metabolismo , Perfilação da Expressão Gênica/métodos
14.
J Hazard Mater ; 465: 133415, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185087

RESUMO

The inevitable organic matters in radioactive wastewater and contaminated waters pose great challenge in uranium recycling by traditional techniques. Here, a self-driven solar coupling system (SSCS), which was assembled by a TiO2 @MXene/CF cathode and a monolithic photoanode, was proposed for synergistically recycling uranium and degrading organics from complex radioactive wastewater, combining with electricity production. The TiO2 @MXene/CF was prepared via a simple annealing process with in-situ derived TiO2 nanoparticles decorated Ti3C2 MXene coated on carbon felt (CF). Under sunlight illumination, the photoanode captured electrons of organics, and drove electrons to the TiO2 @MXene/CF, which exhibited an exceptional UO22+ adsorption and reduction capacity because TiO2 nanoparticles provided plenty of surface hydroxyl groups for UO22+ adsorption, and the unique two-dimensional MXene facilitated the charge transfer. The SSCS with TiO2 @MXene/CF removed almost 100% UO22+ and organics with rate constants of ∼21 and ∼6.9 times those of the system with CF, accompanying with excellent power output (∼1000 µW·cm-2). The fixed uranium on TiO2 @MXene/CF was effectively reduced into insoluble UO2 (91.1%), and no obvious decay was observed after 15 repeated uses. This study proposes a multi-functional and easy-operated way for remediating radioactive wastewater and contaminated waters, and gives valuable insights in designing cathode materials for uranium reduction.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37418413

RESUMO

Gait impairments are among the most common hallmarks of Parkinson's disease (PD), usually appearing in the early stage and becoming a major cause of disability with disease progression. Accurate assessment of gait features is critical to personalized rehabilitation for patients with PD, yet difficult to be routinely carried out as clinical diagnosis using rating scales relies heavily on clinical experience. Moreover, the popular rating scales cannot ensure fine quantification of gait impairments for patients with mild symptoms. Developing quantitative assessment methods that can be used in natural and home-based environments is highly demanded. In this study, we address the challenges by developing an automated video-based Parkinsonian gait assessment method using a novel skeleton-silhouette fusion convolution network. In addition, seven network-derived supplementary features, including critical aspects of gait impairment (gait velocity, arm swing, etc.), are extracted to provide continuous measures enhancing low-resolution clinical rating scales. Evaluation experiments were conducted on a dataset collected with 54 patients with early PD and 26 healthy controls. The results show that the proposed method accurately predicted the patients' unified Parkinson's disease rating scale (UPDRS) gait scores (71.25% match on clinical assessment) and discriminated between PD patients and healthy subjects with a sensitivity of 92.6%. Moreover, three proposed supplementary features (i.e., arm swing amplitude, gait velocity, and neck forward bending angle) turned out to be effective gait dysfunction indicators with Spearman correlation coefficients of 0.78, 0.73, and 0.43 matching the rating scores, respectively. Since the proposed system requires only two smartphones, it holds a significant benefit for home-based quantitative assessment of PD, especially for detecting early-stage PD. Furthermore, the proposed supplementary features can enable high-resolution assessments of PD for providing subject-specific accurate treatments.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Marcha , Esqueleto , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia
16.
J Colloid Interface Sci ; 635: 358-369, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599235

RESUMO

Transition metal sulfides have been demonstrated to be effective for peroxymonosulfate (PMS) activation towards wastewater treatment. However, the activity of vanadium sulfide (VS4) and the role of the chemical state of V have not been revealed. Here, three types of VS4 with various morphologies and chemical states of V were synthesized by using methanol (M-VS4, nanosphere composed of nanosheets), ethanol (E-VS4, sea urchin like nanosphere) and ultrapure water (U-VS4, compact nanosphere) as hydrothermal solvent, respectively, and used as heterogeneous catalysts to activate PMS for the degradation of refractory organic pollutants. The effects of PMS concentration, temperature, pH, inorganic ions, and humic acid (HA) on the degradation efficiency of VS4/PMS system were investigated systematically. The results indicated that the highest specific surface area and lowest ratio of V5+ enable E-VS4/PMS system possessed the highest performance in degrading tetracycline hydrochloride (TCH), in which 100% TCH was removed after operating 10 min (0.805 min-1) under a relatively low concentration of PMS (1 mM) and catalyst (100 mg/L). It also revealed that the system exhibited a typical radical process in TCH degradation, which could be attributed to the redox cycles between V5+, V4+ and V3+ in the presence of PMS to generate various radicals. This radical process enabled the E-VS4/PMS system with a high activity in wide reaction conditions and high mineralization ratios in degrading various refractory organic pollutants within 10 min. In addition, the E-VS4/PMS system exhibited favorable reusability and stability with very less V and S ions leaching, and showed excellent performance in real water purification.

17.
Environ Pollut ; 335: 122262, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506804

RESUMO

Even though uranium (U) is considered to be an essential strategic resource with vital significance to nuclear power development and climate change mitigation, U exposure to human and ecological environment has received growing concerns due to its both highly chemically toxic and radioactively hazardous property. In this study, a composite (M-BC) based on Ficus macrocarpa (banyan tree) aerial roots biochar (BC) modified by δ-MnO2 was designed to separate U(VI) from synthetic wastewater. The results showed that the separation capacity of M-BC was 61.53 mg/g under the solid - liquid ratio of 1 g/L, which was significantly higher than that of BC (12.39 mg/g). The separation behavior of U(VI) both by BC and M-BC fitted well with Freundlich isothermal models, indicating multilayer adsorption occurring on heterogeneous surfaces. The reaction process was consistent with the pseudo-second-order kinetic model and the main rate-limiting step was particle diffusion process. It is worthy to note that the removal of U(VI) by M-BC was maintained at 94.56% even after five cycles, indicating excellent reusability and promising application potential. Multiple characterization techniques (e.g. Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS)) uncovered that U(VI) complexation with oxygen-containing functional groups (e.g. O-CO and Mn-O) and cation exchange with protonated ≡MnOH were the dominant mechanisms for U(VI) removal. Application in real uranium wastewater treatment showed that 96% removal of U was achieved by M-BC and more than 92% of co-existing (potentially) toxic metals such as Tl, Co, Pb, Cu and Zn were simultaneously removed. The work verified a feasible candidate of banyan tree aerial roots biowaste based δ-MnO2-modified porous BC composites for efficient separation of U(VI) from uranium wastewater, which are beneficial to help address the dilemma between sustainability of nuclear power and subsequent hazard elimination.


Assuntos
Urânio , Poluentes Químicos da Água , Humanos , Águas Residuárias , Urânio/análise , Óxidos , Porosidade , Compostos de Manganês , Carvão Vegetal/química , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
18.
Chemosphere ; 314: 137726, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596326

RESUMO

A cobalt (Co)-doped perovskite molybdenum trioxide (α-MoO3) catalyst (Co-MO) was synthesized by a facile pyrolysis strategy and used for degrading various organic contaminants via peroxymonosulfate (PMS) activation. The doped Co was inserted in the inter space between the octahedron [MoO6], facilitating the growth of the α-MoO3 crystal on the [010] direction. This unique structure accelerated the activation of PMS as the Co-MO could function as a carrier for electron transfer to facilitate the Co(II)/Co(III) cycle in the Co-MO/PMS system. As a result, the Co-MO/PMS system showed noticeable activity for removing 100% bisphenol A (BPA) under a broad conditions within 30 min. The radical quenching test and electron paramagnetic resonance analysis revealed that singlet oxygen (1O2) was the main active species for BPA degradation in the Co-MO/PMS system, while free radicals, such as O2•-, SO4•- and •OH, were also produced as the intermediate species. Furthermore, the carrier mechanism may enable the Co-MO/PMS system maintain relatively high performance during repeat use, and also excellent adaptability was revealed by the well function in various water matrices and high activity in degrading various refractory organic pollutants. Our findings pave a useful avenue for the rational design of novel cobalt-doped catalysts with high catalytic performance toward wide environmental applications.


Assuntos
Cobalto , Poluentes Ambientais , Poluentes Ambientais/química , Peróxidos/química
19.
J Hazard Mater ; 457: 131842, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329600

RESUMO

Efficient degradation of antibiotic by peroxydisulfate (PDS)-based advanced oxidation processes in complex water environment is challenging due to the interference of impurities and the low activation efficiency of PDS caused by its symmetric structure. Herein, a novel Cu7S4/PDS system was developed, which can selectively remove tetracycline hydrochloride (TC) without interference of inorganic ions (e.g., Cl- and HCO3-) and natural organic matter (e.g., humic acid). The results of quenching and probe experiments demonstrated that surface high-valent copper species (Cu(III)), rather than radicals and 1O2, are main active species for TC degradation. Cu(III) can be generated via Cu(I)/O2 and Cu(II)/Cu(I)/PDS systems and the S species on the surface of Cu7S4 promotes the cycle of Cu(II)/Cu(I) and Cu(III)/Cu(II), resulting in continuous generation of Cu(III). In addition, the degradation pathways of TC were proposed based on product analysis and DFT theory calculations. The acute toxicity, developmental toxicity and mutagenicity of treated TC were significantly reduced according to the results of toxicity estimation software tool. This study shows a promising Cu7S4/PDS system for the degradation and detoxication of antibiotic in complex water environment, while also providing a comprehensive understanding of PDS activation by Cu7S4 to generate active Cu(III) species.


Assuntos
Antibacterianos , Cobre , Antibacterianos/toxicidade , Antibacterianos/química , Cobre/toxicidade , Cobre/química , Tetraciclina/toxicidade , Tetraciclina/química , Oxirredução , Água
20.
Environ Sci Pollut Res Int ; 30(20): 58019-58029, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36973628

RESUMO

Reed is a typical emerged plant in constructed wetlands (CWs). Its litters were used as raw materials for preparing Fe-C ceramic-filler (Fe-C-CF). The physical and chemical properties of Fe-C-CF were studied under different conditions, including the mass ration of Fe to carbon (Fe/C ratio), sintering temperature, and time, to determine the optimum preparing conditions. Meanwhile, the denitrification performance and CO2 emission flux of the surface flow constructed wetland (SFCW) systems were investigated when using Fe-C-CF as the matrix. The optimum preparing conditions for Fe-C-CF were Fe/C ratio of 1:1, sintering temperature and time of 500 °C and 20 min, respectively. The SFCW system with Fe-C-CF obtained a higher total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH3-N) removal efficiencies than the control SFCW system without Fe-C-CF. Compared with the heterotrophic denitrification process, the SFCW system with Fe-C-CF decreased CO2 emission by 67.9 g m-2 per year. The results of microbial community analysis indicated that addition of Fe-C-CF increased the diversity and abundance of microbial communities in the SFCW systems. The dominant genus of the SFCW system with Fe-C-CF was Bacillus, while Uliginosibacterium was the dominant genus in the system without the filler.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Consórcios Microbianos , Dióxido de Carbono , Nitrogênio/análise , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA