Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Arch Toxicol ; 97(9): 2371-2383, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482551

RESUMO

Exposure to toxic elements in drinking water, such as arsenic (As) and fluoride (F), starts at gestation and has been associated with memory and learning deficits in children. Studies in which rodents underwent mechanistic single exposure to As or F showed that the neurotoxic effects are associated with their capacity to disrupt redox balance, mainly by diminishing glutathione (GSH) levels, altering glutamate disposal, and altering glutamate receptor expression, which disrupts synaptic transmission. Elevated levels of As and F are common in groundwater worldwide. To explore the neurotoxicity of chronic exposure to As and F in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and 25 mg/L F (sodium fluoride) alone or in combination. The male litter continued to receive exposure up to 30 or 90 days after birth. The effects of chronic exposure on GSH levels, transsulfuration pathway enzymatic activity, expression of cysteine/cystine transporters, glutamate transporters, and ionotropic glutamate receptor subunits as well as behavioral performance in the object recognition memory task were assessed. Combined exposure resulted in a significant reduction in GSH levels in the cortex and hippocampus at different times, decreased transsulfuration pathway enzyme activity, as well as diminished xCT protein expression. Altered glutamate receptor expression in the cortex and hippocampus and decreased transaminase enzyme activity were observed. These molecular alterations were associated with memory impairment in the object recognition task, which relies on these brain regions.


Assuntos
Arsênio , Água Potável , Gravidez , Feminino , Camundongos , Animais , Masculino , Fluoretos/toxicidade , Ácido Glutâmico/metabolismo , Arsênio/toxicidade , Receptores de Glutamato/metabolismo , Oxirredução , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Glutationa/metabolismo
2.
Neural Plast ; 2022: 7432842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213614

RESUMO

The dentate gyrus (DG) is the gateway of sensory information arriving from the perforant pathway (PP) to the hippocampus. The adequate integration of incoming information into the DG is paramount in the execution of hippocampal-dependent cognitive functions. An abnormal DG granule cell layer (GCL) widening due to granule cell dispersion has been reported under hyperexcitation conditions in animal models as well as in patients with mesial temporal lobe epilepsy, but also in patients with no apparent relation to epilepsy. Strikingly, it is unclear whether the presence and severity of GCL widening along time affect synaptic processing arising from the PP and alter the performance in hippocampal-mediated behaviors. To evaluate the above, we injected excitotoxic kainic acid (KA) unilaterally into the DG of mice and analyzed the evolution of GCL widening at 10 and 30 days post injection (dpi), while analyzing if KA-induced GCL widening affected in vivo long-term potentiation (LTP) in the PP-DG pathway, as well as the performance in learning and memory through contextual fear conditioning. Our results show that at 10 dpi, when a subtle GCL widening was observed, LTP induction, as well as contextual fear memory, were impaired. However, at 30 dpi when a pronounced increase in GCL widening was found, LTP induction and contextual fear memory were already reestablished. These results highlight the plastic potential of the DG to recover some of its functions despite a major structural alteration such as abnormal GCL widening.


Assuntos
Giro Denteado , Potenciação de Longa Duração , Animais , Cognição , Giro Denteado/metabolismo , Medo , Ácido Caínico/metabolismo , Ácido Caínico/toxicidade , Potenciação de Longa Duração/fisiologia , Plásticos/metabolismo
3.
Brain Behav Immun ; 97: 286-302, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34174334

RESUMO

The continuous generation of new neurons occurs in at least two well-defined niches in the adult rodent brain. One of these areas is the subgranular zone of the dentate gyrus (DG) in the hippocampus. While the DG is associated with contextual and spatial learning and memory, hippocampal neurogenesis is necessary for pattern separation. Hippocampal neurogenesis begins with the activation of neural stem cells and culminates with the maturation and functional integration of a portion of the newly generated glutamatergic neurons into the hippocampal circuits. The neurogenic process is continuously modulated by intrinsic factors, one of which is neuroinflammation. The administration of lipopolysaccharide (LPS) has been widely used as a model of neuroinflammation and has yielded a body of evidence for unveiling the detrimental impact of inflammation upon the neurogenic process. This work aims to provide a comprehensive overview of the current knowledge on the effects of the systemic and central administration of LPS upon the different stages of neurogenesis and discuss their effects at the molecular, cellular, and behavioral levels.


Assuntos
Lipopolissacarídeos , Células-Tronco Neurais , Giro Denteado , Hipocampo , Neurogênese
4.
Cell Mol Neurobiol ; 38(8): 1517-1528, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30315388

RESUMO

Neurogenesis is a plastic event modulated by external cues. Systemic inflammation decreases neurogenesis in the dentate gyrus (DG) in part through the proliferative restrain of neural precursor cells (NPCs). To evaluate if inflammation affects the cell cycle progression of particular populations of NPCs, we treated young-adult mice with a single i.p. injection of saline or 1 mg/kg LPS. After 7 days, we analysed proliferation of new BrdU+/DCX+ cells through immunohistochemistry. We extracted the hippocampus and performed a neurosphere assay and a flow cytometric analysis to evaluate proliferation and to identify the phase of the cell cycle in specific populations of DG-derived NPCs. We show that the number of BrdU+/DCX+ cells diminishes in the LPS-treated group and that the number of primary neurospheres derived from LPS-injected animals is significantly reduced compared to the saline-injected group. Flow cytometry revealed that inflammation does not affect the total number of Type 1 BLBP+/TBR2- cells, while the total number of Type 2 intermediate precursor cells (IPCs) (TBR2+) from the LPS-treated group was increased. Cell cycle analysis shows a decrease in the total rate of NPCs in phases S, G2 and M in the LPS-treated group. The percentage of Type 1 BLBP+/TBR2- cells in each cell cycle phase was not different between groups, while there was a fewer number of Type 2 TBR2+ cells in S/G2/M phase. These results show that inflammation alters the appropriate cell cycle progression of Type 2 IPCs, which may contribute to the decrease in the birth rate of DG neurons.


Assuntos
Hipocampo/patologia , Inflamação/patologia , Células-Tronco Neurais/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Contagem de Células , Ciclo Celular , Proliferação de Células , Tamanho Celular , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuropeptídeos/metabolismo , Esferoides Celulares/metabolismo , Redução de Peso/efeitos dos fármacos
5.
Cell Mol Neurobiol ; 37(7): 1311-1318, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28124209

RESUMO

Amyloid-ß protein (Aß) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aß-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aß. We found that Aß induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aß, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aß. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aß-induced effects on neuronal structural alterations.


Assuntos
Actinas/metabolismo , Peptídeos beta-Amiloides/toxicidade , Anti-Inflamatórios não Esteroides/farmacologia , Citoesqueleto/enzimologia , Fragmentos de Peptídeos/toxicidade , Transdução de Sinais/fisiologia , Quinases Associadas a rho/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Inibidores Enzimáticos/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
7.
Rev Neurosci ; 26(3): 269-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781539

RESUMO

Hippocampal neurogenesis occurs in the adult brain in various species, including humans. A compelling question that arose when neurogenesis was accepted to occur in the adult dentate gyrus (DG) is whether new neurons become functionally relevant over time, which is key for interpreting their potential contributions to synaptic circuitry. The functional state of adult-born neurons has been evaluated using various methodological approaches, which have, in turn, yielded seemingly conflicting results regarding the timing of maturation and functional integration. Here, we review the contributions of different methodological approaches to addressing the maturation process of adult-born neurons and their functional state, discussing the contributions and limitations of each method. We aim to provide a framework for interpreting results based on the approaches currently used in neuroscience for evaluating functional integration. As shown by the experimental evidence, adult-born neurons are prone to respond from early stages, even when they are not yet fully integrated into circuits. The ongoing integration process for the newborn neurons is characterised by different features. However, they may contribute differently to the network depending on their maturation stage. When combined, the strategies used to date convey a comprehensive view of the functional development of newly born neurons while providing a framework for approaching the critical time at which new neurons become functionally integrated and influence brain function.


Assuntos
Giro Denteado/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Neurônios/fisiologia , Adulto , Giro Denteado/citologia , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Neurogênese/genética , Neurônios/metabolismo
8.
Sci Rep ; 14(1): 4608, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409172

RESUMO

Individuals with autism spectrum disorder (ASD) often exhibit atypical hippocampal anatomy and connectivity throughout their lifespan, potentially linked to alterations in the neurogenic process within the hippocampus. In this study, we performed an in-silico analysis to identify single-nucleotide polymorphisms (SNPs) in genes relevant to adult neurogenesis in the C58/J model of idiopathic autism. We found coding non-synonymous (Cn) SNPs in 33 genes involved in the adult neurogenic process, as well as in 142 genes associated with the signature genetic profile of neural stem cells (NSC) and neural progenitors. Based on the potential alterations in adult neurogenesis predicted by the in-silico analysis, we evaluated the number and distribution of newborn neurons in the dentate gyrus (DG) of young adult C58/J mice. We found a reduced number of newborn cells in the whole DG, a higher proportion of early neuroblasts in the subgranular layer (SGZ), and a lower proportion of neuroblasts with morphological maturation signs in the granule cell layer (GCL) of the DG compared to C57BL/6J mice. The observed changes may be associated with a delay in the maturation trajectory of newborn neurons in the C58/J strain, linked to the Cn SNPs in genes involved in adult hippocampal neurogenesis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/genética , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Hipocampo/fisiologia , Neurogênese/genética , Polimorfismo Genético , Giro Denteado/fisiologia
9.
Curr Neuropharmacol ; 11(5): 465-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24403870

RESUMO

It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity.

10.
Sensors (Basel) ; 12(2): 1800-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438738

RESUMO

We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax.


Assuntos
Técnicas Biossensoriais , Microscopia de Fluorescência/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise Serial de Proteínas/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
11.
Biochim Biophys Acta ; 1801(2): 147-55, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19840867

RESUMO

In the present study we have applied a novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) in combination with fluorescently labeled cholera toxin to the study of lipid rafts dynamics in living cells. We demonstrate the usefulness of such approach by showing the dynamic formation/disaggregation of islands of cholera toxin on the surface of cells. Using multicolor LG-TIRFM with co-localization studies we show for the first time that two receptors previously identified as constituents of lipid rafts are found on different and independent "raft domains" on the cell plasma membrane. Furthermore, LG-TIRFM studies revealed limited association and dissociation of both domains overtime on different areas of the plasma membrane. The implications of different "raft domains" on cell physiology are discussed.


Assuntos
Membrana Celular/química , Rim/citologia , Microdomínios da Membrana/química , Microscopia de Fluorescência , Antígenos CD55/metabolismo , Células Cultivadas , Toxina da Cólera/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Rim/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
12.
Front Neurosci ; 15: 782947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046769

RESUMO

New neurons are continuously generated and functionally integrated into the dentate gyrus (DG) network during the adult lifespan of most mammals. The hippocampus is a crucial structure for spatial learning and memory, and the addition of new neurons into the DG circuitry of rodents seems to be a key element for these processes to occur. The Morris water maze (MWM) and contextual fear conditioning (CFC) are among the most commonly used hippocampus-dependent behavioral tasks to study episodic-like learning and memory in rodents. While the functional contribution of adult hippocampal neurogenesis (AHN) through these paradigms has been widely addressed, results have generated controversial findings. In this review, we analyze and discuss possible factors in the experimental methods that could explain the inconsistent results among AHN studies; moreover, we provide specific suggestions for the design of more sensitive protocols to assess AHN-mediated learning and memory functions.

13.
Front Neurosci ; 14: 514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508587

RESUMO

Young neurons in the adult brain are key to some types of learning and memory. They integrate in the dentate gyrus (DG) of the hippocampus contributing to such cognitive processes following timely developmental events. While experimentally impairing GABAergic transmission through the blockade or elimination of the ionic cotransporter NKCC1 leads to alterations in the proper maturation of young neurons, it is still unknown if the in vivo administration of common use diuretic drugs that block the cotransporter, alters the development of young hippocampal neurons and affects DG-related functions. In this study, we delivered chronically and intracerebroventricularly the NKCC1 blocker bumetanide to young-adult rats. We analyzed doublecortin density and development parameters (apical dendrite length and angle and dendritic arbor length) in doublecortin positive neurons from different subregions in the DG and evaluated the performance of animals in contextual fear learning and memory. Our results show that in bumetanide-treated subjects, doublecortin density is diminished in the infra and suprapyramidal blades of the DG; the length of primary dendrites is shortened in the infrapyramidal blade and; the growth angle of primary dendrites in the infrapyramidal blade is different from control animals. Behaviorally, treated animals showed the typical learning curve in a contextual fear task, and freezing-time displayed during contextual fear memory was not different from controls. Thus, in vivo icv delivery of bumetanide negatively alters DCX density associated to young neurons and its proper development but not to the extent of affecting a DG dependent task as aversive context learning and memory.

14.
Horm Behav ; 55(1): 257-63, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19056393

RESUMO

Sex differences in the morphology and function of the hippocampus have been reported in several species, but it is unknown whether a sexual dimorphism exists in glial fibrillary acidic protein (GFAP) expression in the rat hippocampus. We analyzed GFAP immunoreactivity in the hippocampus of intact adult male rats as well as in females during diestrus and proestrus phases of the estrous cycle. We found that in CA1, CA3, and dentate gyrus, GFAP immunoreactivity was higher in proestrus females as compared with males and diestrus females. In CA1, a similar GFAP immunoreactivity was found in males and in diestrus females, but in dentate gyrus, males presented the lowest GFAP content. Interestingly, differences in astrocyte morphology were also found. Rounded cells with numerous and short processes were mainly observed in the hippocampus during proestrus whereas cells with stellate shape with few and long processes were present in the hippocampus of males and diestrus females. The marked sex and estrous cycle-dependent differences in GFAP immunoreactivity density and in astrocyte number and morphology found in the rat hippocampus, suggest the involvement of sex steroid hormones in the sexually dimorphic functions of the hippocampus, and in the change in its activity during the estrous cycle.


Assuntos
Ciclo Estral/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/fisiologia , Caracteres Sexuais , Análise de Variância , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Forma Celular , Diestro , Imunofluorescência , Hipocampo/citologia , Masculino , Proestro , Ratos , Ratos Wistar
15.
Neural Regen Res ; 14(5): 817-825, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30688267

RESUMO

Adult hippocampal neurogenesis is a finely tuned process regulated by extrinsic factors. Neuroinflammation is a hallmark of several pathological conditions underlying dysregulation of neurogenesis. In animal models, lipopolysaccharide (LPS)-induced neuroinflammation leads to a neurogenic decrease mainly associated to the early inflammatory response. However, it is not well understood how the neuroinflammatory response progresses over time and if neurogenesis continues to be diminished during the late neuroinflammatory response. Moreover, it is unknown if repeated intermittent administration of LPS along time induces a greater reduction in neurogenesis. We administered one single intraperitoneal injection of LPS or saline or four repeated injections (one per week) of LPS or saline to young-adult mice. A cohort of new cells was labeled with three 5-bromo-2-deoxyuridine injections (one per day) 4 days after the last LPS injection. We evaluated systemic and neuroinflammation-associated parameters and compared the effects of the late neuroinflammatory response on neurogenesis induced by each protocol. Our results show that 1) a single LPS injection leads to a late pro-inflammatory response characterized by microglial activation, moderate astrocytic reaction and increased interleukin-6 levels. This response correlates in time with decreased neurogenesis and 2) a repeated intermittent injection of LPS does not elicit a late pro-inflammatory response although activated microglia persists. The latter profile is not accompanied by a continued long-term hippocampal neurogenic decrease. Hereby, we provide evidence that the neuroinflammatory response is a dynamic process that progresses in a milieu-dependent manner and does not necessarily lead to a neurogenic decrease, highlighting the complex interaction between the immune system and neurogenesis.

16.
Brain Struct Funct ; 223(6): 2859-2877, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663136

RESUMO

The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.


Assuntos
Giro Denteado/lesões , Giro Denteado/patologia , Rememoração Mental/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Mapeamento Encefálico , Bromodesoxiuridina , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Giro Denteado/diagnóstico por imagem , Proteína Duplacortina , Agonistas de Aminoácidos Excitatórios/toxicidade , Comportamento Exploratório/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Ácido Caínico/toxicidade , Masculino , Rememoração Mental/efeitos dos fármacos , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia , Estatísticas não Paramétricas , Fatores de Tempo
17.
Rev Neurosci ; 29(1): 1-20, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28873068

RESUMO

The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.


Assuntos
Exercício Físico , Hipocampo/citologia , Inflamação/patologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Diferenciação Celular , Humanos , Inflamação/induzido quimicamente , Neurogênese/fisiologia
18.
J Neuropathol Exp Neurol ; 66(10): 913-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17917585

RESUMO

Vascular endothelial growth factor (VEGF) delays disease onset and progression in transgenic rodent models of familial amyotrophic lateral sclerosis (ALS). Because most cases of ALS are sporadic, it is important to determine whether VEGF can protect motoneurons in a nontransgenic ALS paradigm. We tested this possibility in a new model of chronic excitotoxic spinal neurodegeneration in the rat. Using osmotic minipumps, we continuously infused the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) directly in the lumbar spinal cord. The effect of this treatment on motor behavior was assessed with 3 motor performance tests, and neurodegeneration was evaluated by histologic and immunohistochemical analyses. AMPA infusion produced dose-dependent progressive hindlimb motor deficits, reaching complete bilateral paralysis in approximately 10 days, which was correlated with the loss of spinal motoneurons. VEGF administered together with AMPA completely prevented the motor deficits, and the motoneuron death was reduced by more than 75%. Thus, we have developed an in vivo model of progressive spinal motoneuron death due to overactivation of AMPA receptors. The finding that VEGF protected motoneurons from this AMPA receptor-mediated excitotoxic death suggests that it may be a therapeutic agent in sporadic ALS.


Assuntos
Neurônios Motores/efeitos dos fármacos , Degeneração Neural/patologia , Paralisia/prevenção & controle , Doenças da Medula Espinal/patologia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Morte Celular/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Membro Posterior/fisiologia , Imuno-Histoquímica , Masculino , Degeneração Neural/induzido quimicamente , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Receptores de AMPA/efeitos dos fármacos , Doenças da Medula Espinal/induzido quimicamente
20.
Anat Rec (Hoboken) ; 300(2): 425-432, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27860379

RESUMO

Kainic acid-induced (KA) hippocampal damage leads to neuronal death and further synaptic plasticity. Formation of aberrant as well as of functional connections after such procedure has been documented. However, the impact of such structural plasticity on cell activation along time after damage and in face of a behavioral demand has not been explored. We evaluated if the mRNA and protein levels of plasticity-related protein synaptophysin (Syp and SYP, respectively) and activity-regulated cytoskeleton-associated protein mRNA and protein levels (Arc and Arc, respectively) in the dentate gyrus were differentially modulated in time in response to a spatial-exploratory task after KA-induced hippocampal damage. In addition, we analyzed Arc+/NeuN+ immunopositive cells in the different experimental conditions. We infused KA intrahippocampally to young-adult rats and 10 or 30 days post-lesion (dpl) animals performed a hippocampus-activating spatial-exploratory task. Our results show that Syp mRNA levels significantly increase at 10dpl and return to control levels after 30dpl, whereas SYP protein levels are diminished at 10dpl, but significantly increase at 30dpl, as compared to 10dpl. Arc mRNA and protein levels are both increased at 30dpl as compared to sham. Also the number of NeuN+/Arc+ cells significantly increases at 30dpl in the group with a spatial-exploratory demand. These results provide information on the long-term modifications associated to structural plasticity and neuronal activation in the dentate gyrus after excitotoxic damage and in face of a spatial-exploratory behavior. Anat Rec, 300:425-432, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Comportamento Exploratório/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Neurônios/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA