Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(1): 229-241.e15, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938115

RESUMO

Zika virus (ZIKV), a mosquito-borne flavivirus, causes devastating congenital birth defects. We isolated a human monoclonal antibody (mAb), ZKA190, that potently cross-neutralizes multi-lineage ZIKV strains. ZKA190 is highly effective in vivo in preventing morbidity and mortality of ZIKV-infected mice. NMR and cryo-electron microscopy show its binding to an exposed epitope on DIII of the E protein. ZKA190 Fab binds all 180 E protein copies, altering the virus quaternary arrangement and surface curvature. However, ZIKV escape mutants emerged in vitro and in vivo in the presence of ZKA190, as well as of other neutralizing mAbs. To counter this problem, we developed a bispecific antibody (FIT-1) comprising ZKA190 and a second mAb specific for DII of E protein. In addition to retaining high in vitro and in vivo potencies, FIT-1 robustly prevented viral escape, warranting its development as a ZIKV immunotherapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Infecção por Zika virus/terapia , Zika virus/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/química , Microscopia Crioeletrônica , Epitopos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Zika virus/imunologia
2.
Proteins ; 92(1): 15-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37497770

RESUMO

Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the ß-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.


Assuntos
Isoleucina , Proteínas de Membrana , Leucina/química , Isoleucina/química , Sequência de Aminoácidos , Proteínas de Membrana/química , Aminoácidos , Proteínas de Transporte/metabolismo
3.
J Am Chem Soc ; 146(25): 17261-17269, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38759637

RESUMO

Many peptidic natural products, such as lasso peptides, cyclic peptides, and cyclotides, are conformationally constrained and show biological stability, making them attractive scaffolds for drug development. Although many peptides can be synthesized and modified through chemical methods, knot-like lasso peptides such as microcin J25 (MccJ25) and their analogues remain elusive. As the chemical space of MccJ25 analogues accessible through purely biological methods is also limited, we proposed a hybrid approach: flow-based chemical synthesis of non-natural precursor peptides, followed by in vitro transformation with recombinant maturation enzymes, to yield a more diverse array of lasso peptides. Herein, we established the rapid, flow-based synthesis of chemically modified MccJ25 precursor peptides (57 amino acids). Heterologous expression of enzymes McjB and McjC was extensively optimized to improve yields and facilitate the synthesis of multiple analogues of MccJ25, including the incorporation of non-canonical tyrosine and histidine derivatives into the lasso scaffold. Finally, using our chemoenzymatic strategy, we produced a biologically active analogue containing three d-amino acids in the loop region and incorporated backbone N-methylations. Our method provides rapid access to chemically modified lasso peptides that could be used to investigate structure-activity relationships, epitope grafting, and the improvement of therapeutic properties.


Assuntos
Peptídeos , Peptídeos/química , Peptídeos/síntese química , Bacteriocinas
4.
Biochemistry ; 62(2): 318-329, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35657362

RESUMO

High protein stability is an important feature for proteins used as therapeutics, as diagnostics, and in basic research. We have previously employed consensus design to engineer optimized Armadillo repeat proteins (ArmRPs) for sequence-specific recognition of linear epitopes with a modular binding mode. These designed ArmRPs (dArmRPs) feature high stability and are composed of M-type internal repeats that are flanked by N- and C-terminal capping repeats that protect the hydrophobic core from solvent exposure. While the overall stability of the designed ArmRPs is remarkably high, subsequent biochemical and biophysical experiments revealed that the N-capping repeat assumes a partially unfolded, solvent-accessible conformation for a small fraction of time that renders it vulnerable to proteolysis and aggregation. To overcome this problem, we have designed new N-caps starting from an M-type internal repeat using the Rosetta software. The superior stability of the computationally refined models was experimentally verified by circular dichroism and nuclear magnetic resonance spectroscopy. A crystal structure of a dArmRP containing the novel N-cap revealed that the enhanced stability correlates with an improved packing of this N-cap onto the hydrophobic core of the dArmRP. Hydrogen exchange experiments further show that the level of local unfolding of the N-cap is reduced by several orders of magnitude, resulting in increased resistance to proteolysis and weakened aggregation. As a first application of the novel N-cap, we determined the solution structure of a dArmRP with four internal repeats, which was previously impeded by the instability of the original N-cap.


Assuntos
Proteínas do Domínio Armadillo , Conformação Proteica , Modelos Moleculares , Proteínas do Domínio Armadillo/química , Espectroscopia de Ressonância Magnética , Estabilidade Proteica
5.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298811

RESUMO

The cationic antimicrobial ß-hairpin, thanatin, was recently developed into drug-like analogues active against carbapenem-resistant Enterobacteriaceae (CRE). The analogues represent new antibiotics with a novel mode of action targeting LptA in the periplasm and disrupting LPS transport. The compounds lose antimicrobial efficacy when the sequence identity to E. coli LptA falls below 70%. We wanted to test the thanatin analogues against LptA of a phylogenetic distant organism and investigate the molecular determinants of inactivity. Acinetobacter baumannii (A. baumannii) is a critical Gram-negative pathogen that has gained increasing attention for its multi-drug resistance and hospital burden. A. baumannii LptA shares 28% sequence identity with E. coli LptA and displays an intrinsic resistance to thanatin and thanatin analogues (MIC values > 32 µg/mL) through a mechanism not yet described. We investigated the inactivity further and discovered that these CRE-optimized derivatives can bind to LptA of A. baumannii in vitro, despite the high MIC values. Herein, we present a high-resolution structure of A. baumannii LptAm in complex with a thanatin derivative 7 and binding affinities of selected thanatin derivatives. Together, these data offer structural insights into why thanatin derivatives are inactive against A. baumannii LptA, despite binding events in vitro.


Assuntos
Acinetobacter baumannii , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Proteínas de Bactérias , Proteínas de Transporte , Peptídeos Catiônicos Antimicrobianos/química , Ligação Proteica , Proteínas de Bactérias/química , Proteínas de Transporte/química , Antibacterianos/química , Conformação Proteica , Sequência de Aminoácidos , Sequência Conservada
6.
J Biomol NMR ; 75(8-9): 319-334, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338940

RESUMO

NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.


Assuntos
Proteínas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
7.
Mol Cell ; 50(3): 333-43, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23623683

RESUMO

The regulation of DNA double-strand break (DSB) repair by phosphorylation-dependent signaling pathways is crucial for the maintenance of genome stability; however, remarkably little is known about the molecular mechanisms by which phosphorylation controls DSB repair. Here, we show that PIN1, a phosphorylation-specific prolyl isomerase, interacts with key DSB repair factors and affects the relative contributions of homologous recombination (HR) and nonhomologous end-joining (NHEJ) to DSB repair. We find that PIN1-deficient cells display reduced NHEJ due to increased DNA end resection, whereas resection and HR are compromised in PIN1-overexpressing cells. Moreover, we identify CtIP as a substrate of PIN1 and show that DSBs become hyperresected in cells expressing a CtIP mutant refractory to PIN1 recognition. Mechanistically, we provide evidence that PIN1 impinges on CtIP stability by promoting its ubiquitylation and subsequent proteasomal degradation. Collectively, these data uncover PIN1-mediated isomerization as a regulatory mechanism coordinating DSB repair.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Instabilidade Genômica , Células HEK293 , Recombinação Homóloga , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Ubiquitinação
8.
Chimia (Aarau) ; 75(6): 505-507, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34233813

RESUMO

Heteronuclear NMR in combination with isotope labelling is used to study folding of polypeptides induced by metals in the case of metallothioneins, binding of the peptidic allosteric modulator ρ-TIA to the human G-protein coupled α1b adrenergic receptor, the development of therapeutic drugs that interfere with the biosynthesis of the outer membrane of Gram-negative bacteria, and a system in which protein assembly is induced upon peptide addition. NMR in these cases is used to derive precise structural data and to study the dynamics.


Assuntos
Peptídeos , Receptores Adrenérgicos alfa 1 , Humanos
9.
J Biomol NMR ; 74(1): 45-60, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31754899

RESUMO

Resonance assignments are challenging for membrane proteins due to the size of the lipid/detergent-protein complex and the presence of line-broadening from conformational exchange. As a consequence, many correlations are missing in the triple-resonance NMR experiments typically used for assignments. Herein, we present an approach in which correlations from these solution-state NMR experiments are supplemented by data from 13C unlabeling, single-amino acid type labeling, 4D NOESY data and proximity of moieties to lipids or water in combination with a structure of the protein. These additional data are used to edit the expected peaklists for the automated assignment protocol FLYA, a module of the program package CYANA. We demonstrate application of the protocol to the 262-residue proton pump from archaeal bacteriorhodopsin (bR) in lipid nanodiscs. The lipid-protein assembly is characterized by an overall correlation time of 44 ns. The protocol yielded assignments for 62% of all backbone (H, N, Cα, Cß, C') resonances of bR, corresponding to 74% of all observed backbone spin systems, and 60% of the Ala, Met, Ile (δ1), Leu and Val methyl groups, thus enabling to assign a large fraction of the protein without mutagenesis data. Most missing resonances stem from the extracellular half, likely due intermediate exchange line-broadening. Further analysis revealed that missing information of the amino acid type of the preceding residue is the largest problem, and that 4D NOESY experiments are particularly helpful to compensate for that information loss.


Assuntos
Bacteriorodopsinas/química , Nanopartículas/química , Algoritmos , Sequência de Aminoácidos , Modelos Moleculares , Mapeamento de Peptídeos
10.
Angew Chem Int Ed Engl ; 59(47): 20965-20972, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32726501

RESUMO

To achieve efficient proton pumping in the light-driven proton pump bacteriorhodopsin (bR), the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark-adapted state, and were found to be mostly well ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10 % residual proton pumping activity, are less well ordered, suggesting a link between side-chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground-state bR.


Assuntos
Bacteriorodopsinas/química , Ressonância Magnética Nuclear Biomolecular , Termodinâmica , Bacteriorodopsinas/biossíntese , Bacteriorodopsinas/genética , Modelos Moleculares , Soluções
11.
Biochemistry ; 58(45): 4570-4581, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31633358

RESUMO

Metallothioneins (MTs) are cysteine-rich polypeptides that are naturally found coordinated to monovalent and/or divalent transition metal ions. Three metallothionein isoforms from the Roman snail Helix pomatia are known. They differ in their physiological metal load and in their specificity for transition metal ions such as Cd2+ (HpCdMT isoform) and Cu+ (HpCuMT isoform) or in the absence of a defined metal specificity (HpCd/CuMT isoform). We have determined the solution structure of the Cd-specific isoform (HpCdMT) by nuclear magnetic resonance spectroscopy using recombinant isotopically labeled protein loaded with Zn2+ or Cd2+. Both structures display two-domain architectures, where each domain comprises a characteristic three-metal cluster similar to that observed in the ß-domains of vertebrate MTs. The polypeptide backbone is well-structured over the entire sequence, including the interdomain linker. Interestingly, the two domains display mutual contacts, as observed before for the metallothionein of the snail Littorina littorea, to which both N- and C-terminal domains are highly similar. Increasing the length of the linker motionally decouples both domains and removes mutual contacts between them without having a strong effect on the stability of the individual domains. The structures of Cd6- and Zn6-HpCdMT are nearly identical. However, 15N relaxation, in particular 15N R2 rates, is accelerated for many residues of Zn6-HpCdMT but not for Cd6-HpCdMT, revealing the presence of conformational exchange effects. We suggest that this snail MT isoform is evolutionarily optimized for binding Cd rather than Zn.


Assuntos
Cádmio/metabolismo , Caracois Helix/metabolismo , Metalotioneína/metabolismo , Zinco/metabolismo , Animais , Sítios de Ligação , Caracois Helix/química , Metalotioneína/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica
12.
Biol Chem ; 400(3): 395-404, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30517075

RESUMO

Designed armadillo repeat proteins (dArmRPs) are modular peptide binders composed of N- and C-terminal capping repeats Y and A and a variable number of internal modules M that each specifically recognize two amino acids of the target peptide. Complementary fragments of dArmRPs obtained by splitting the protein between helices H1 and H2 of an internal module show conditional and specific assembly only in the presence of a target peptide (Michel, E., Plückthun, A., and Zerbe, O. (2018). Peptide-guided assembly of repeat protein fragments. Angew. Chem. Int. Ed. 57, 4576-4579). Here, we investigate dArmRP fragments that already spontaneously assemble with high affinity, e.g. those obtained from splits between entire modules or between helices H2 and H3. We find that the interaction of the peptide with the assembled fragments induces distal conformational rearrangements that suggest an induced fit on a global protein level. A population analysis of an equimolar mixture of an N-terminal and three C-terminal fragments with various affinities for the target peptide revealed predominant assembly of the weakest peptide binder. However, adding a target peptide to this mixture altered the population of the protein complexes such that the combination with the highest affinity for the peptide increased and becomes predominant when adding excess of peptide, highlighting the feasibility of peptide-induced enrichment of best binders from inter-modular fragment mixtures.


Assuntos
Proteínas do Domínio Armadillo/química , Peptídeos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
13.
Angew Chem Int Ed Engl ; 57(17): 4576-4579, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29480529

RESUMO

Herein, we present the peptide-guided assembly of complementary fragments of designed armadillo repeat proteins (dArmRPs) to create proteins that bind peptides not only with high affinity but also with good selectivity. We recently demonstrated that complementary N- and C-terminal fragments of dArmRPs form high-affinity complexes that resemble the structure of the full-length protein, and that these complexes bind their target peptides. We now demonstrate that dArmRPs can be split such that the fragments assemble only in the presence of a templating peptide, and that fragment mixtures enrich the combination with the highest affinity for this peptide. The enriched fragment combination discriminates single amino acid variations in the target peptide with high specificity. Our results suggest novel opportunities for the generation of new peptide binders by selection from dArmRP fragment mixtures.


Assuntos
Peptídeos/química , Proteínas/síntese química , Modelos Moleculares , Proteínas/química
14.
J Biol Chem ; 291(53): 27170-27186, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27864365

RESUMO

Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187-3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Fragmentos de Peptídeos/química , Receptores de Fator de Acasalamento/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Micelas , Conformação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos
15.
Int J Mol Sci ; 18(7)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684668

RESUMO

After the resolution of the 3D structure of the Cd9-aggregate of the Littorina littorea metallothionein (MT), we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF), Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M9-LlwtMT complexes with Zn(II) and Cd(II), while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I). As expected, the truncated mutants gave rise to unique M6-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II) than for Zn(II), although the analysis of the Zn(II)/Cd(II) displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II) binding. Contrarily, the analysis of their Cu(I) binding abilities revealed that every LlMT domain is prone to build Cu4-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain) confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.


Assuntos
Cádmio/metabolismo , Metalotioneína/metabolismo , Animais , Sítios de Ligação , Gastrópodes/genética , Gastrópodes/metabolismo , Metalotioneína/química , Metalotioneína/genética , Mutação , Ligação Proteica , Especificidade por Substrato , Zinco/metabolismo
16.
Int J Mol Sci ; 18(7)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684706

RESUMO

The wild-type metallothionein (MT) of the freshwater snail Biomphalaria glabrata and a natural allelic mutant of it in which a lysine residue was replaced by an asparagine residue, were recombinantly expressed and analyzed for their metal-binding features with respect to Cd2+, Zn2+ and Cu⁺, applying spectroscopic and mass-spectrometric methods. In addition, the upregulation of the Biomphalaria glabrataMT gene was assessed by quantitative real-time detection PCR. The two recombinant proteins revealed to be very similar in most of their metal binding features. They lacked a clear metal-binding preference for any of the three metal ions assayed-which, to this degree, is clearly unprecedented in the world of Gastropoda MTs. There were, however, slight differences in copper-binding abilities between the two allelic variants. Overall, the missing metal specificity of the two recombinant MTs goes hand in hand with lacking upregulation of the respective MT gene. This suggests that in vivo, the Biomphalaria glabrata MT may be more important for metal replacement reactions through a constitutively abundant form, rather than for metal sequestration by high binding specificity. There are indications that the MT of Biomphalaria glabrata may share its unspecific features with MTs from other freshwater snails of the Hygrophila family.


Assuntos
Biomphalaria/metabolismo , Metalotioneína/metabolismo , Metais Pesados/metabolismo , Animais , Sítios de Ligação , Biomphalaria/genética , Metalotioneína/química , Metalotioneína/genética , Mutação , Ligação Proteica , Especificidade por Substrato , Regulação para Cima
17.
Angew Chem Int Ed Engl ; 56(16): 4617-4622, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28332759

RESUMO

In this study, we present an NMR structure of the metallothionein (MT) from the snail Littorina littorea (LlMT) in complex with Cd2+ . LlMT is capable of binding 9 Zn2+ or 9 Cd2+ ions. Sequence alignments with other snail MTs revealed that the protein is likely composed of three domains. The study revealed that the protein is divided into three individual domains, each of which folds into a single well-defined three-metal cluster. The central α2 and C-terminal ß domains are positioned with a unique relative orientation. Two variants with longer and shorter linkers were investigated, which revealed that specific interdomain contacts only occurred with the wild-type linker. Moreover, a domain-swap mutant in which the highly similar α1 and α2 domains were exchanged was structurally almost identical. It is suggested that the expression of a three-domain MT confers an evolutionary advantage on Littorina littorea in terms of coping with Cd2+ stress and adverse environmental conditions.


Assuntos
Cádmio/química , Metalotioneína/química , Caramujos/química , Animais , Espectroscopia de Ressonância Magnética , Modelos Moleculares
18.
Biochemistry ; 55(21): 2936-43, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27166502

RESUMO

LptE is an outer membrane (OM) lipoprotein found in Gram-negative bacteria, where it forms a complex with the ß-barrel lipopolysaccharide (LPS) transporter LptD. The LptD/E complex plays a key role in OM biogenesis, by translocating newly synthesized LPS molecules from the periplasm into the external leaflet of the asymmetric OM during cell growth. The LptD/E complex in Pseudomonas aeruginosa (Pa) is a target for macrocyclic ß-hairpin-shaped peptidomimetic antibiotics, which inhibit the transport of LPS to the cell surface. So far, the three-dimensional structure of the Pa LptD/E complex and the mode of interaction with these antibiotics are unknown. Here, we report the solution structure of a Pa LptE derivative lacking the N-terminal lipid membrane anchor, determined by multidimensional solution nuclear magnetic resonance (NMR) spectroscopy. The structure reveals a central five-stranded ß-sheet against which pack a long C-terminal and a short N-terminal α-helix, as found in homologues of LptE from other Gram-negative bacteria. One unique feature is an extended C-terminal helix in Pa LptE, which in a model of the Pa LptD/E complex appears to be long enough to contact the periplasmic domain of LptD. Chemical shift mapping experiments suggest only weak interactions occur between LptE and the oligosaccharide chains of LPS. The NMR structure of Pa LptE will be valuable for more detailed structural studies of the LptD/E complex from P. aeruginosa.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Lipopolissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Transporte Biológico , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica , Soluções
20.
Proc Natl Acad Sci U S A ; 110(29): 11725-30, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818626

RESUMO

By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface. We propose this rearrangement of the water network to be another possible mechanism of allostery.


Assuntos
Compostos Azo/química , Lasers , Modelos Moleculares , Fotoquímica/métodos , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Regulação Alostérica/fisiologia , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA