Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 123(3): 1042-1051, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851573

RESUMO

We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin-Huxley and Morris-Lecar models. We show that the resulting mean-field models are capable of predicting the correct spontaneous activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical dynamics. Moreover, it is possible to quantitatively predict the population response to external stimuli in the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the scale between population dynamics and the microscopic complexity of the individual cells physiology.NEW & NOTEWORTHY Population models are a powerful mathematical tool to study the dynamics of neuronal networks and to simulate the brain at macroscopic scales. We present a mean-field model capable of quantitatively predicting the temporal dynamics of a network of complex spiking neuronal models, from Integrate-and-Fire to Hodgkin-Huxley, thus linking population models to neurons electrophysiology. This opens a perspective on generating biologically realistic mean-field models from electrophysiological recordings.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Animais , Humanos
2.
J Physiol ; 594(13): 3791-808, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27146816

RESUMO

KEY POINTS: We recreated in vitro the fluctuation-driven regime observed at the soma during asynchronous network activity in vivo and we studied the firing rate response as a function of the properties of the membrane potential fluctuations. We provide a simple analytical template that captures the firing response of both pyramidal neurons and various theoretical models. We found a strong heterogeneity in the firing rate response of layer V pyramidal neurons: in particular, individual neurons differ not only in their mean excitability level, but also in their sensitivity to fluctuations. Theoretical modelling suggest that this observed heterogeneity might arise from various expression levels of the following biophysical properties: sodium inactivation, density of sodium channels and spike frequency adaptation. ABSTRACT: Characterizing the input-output properties of neocortical neurons is of crucial importance for understanding the properties emerging at the network level. In the regime of low-rate irregular firing (such as in the awake state), determining those properties for neocortical cells remains, however, both experimentally and theoretically challenging. Here, we studied this problem using a combination of theoretical modelling and in vitro experiments. We first identified, theoretically, three somatic variables that describe the dynamical state at the soma in this fluctuation-driven regime: the mean, standard deviation and time constant of the membrane potential fluctuations. Next, we characterized the firing rate response of individual layer V pyramidal cells in this three-dimensional space by means of perforated-patch recordings and dynamic clamp in the visual cortex of juvenile mice in vitro. We found that individual neurons strongly differ not only in terms of their excitability, but also, and unexpectedly, in their sensitivities to fluctuations. Finally, using theoretical modelling, we attempted to reproduce these results. The model predicts that heterogeneous levels of biophysical properties such as sodium inactivation, sharpness of sodium activation and spike frequency adaptation account for the observed diversity of firing rate responses. Because the firing rate response will determine population rate dynamics during asynchronous neocortical activity, our results show that cortical populations are functionally strongly inhomogeneous in young mouse visual cortex, which should have important consequences on the strategies of cortical computation at early stages of sensory processing.


Assuntos
Modelos Neurológicos , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Técnicas In Vitro , Masculino , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA