Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979524

RESUMO

The present research is focused on the development of a biofunctionalized hydrogel with a surface diffractive micropattern as a label-free biosensing platform. The biosensors described in this paper were fabricated with a holographic recording of polyethylene terephthalate (PET) surface micro-structures, which were then transferred into a hydrogel material. Acrylamide-based hydrogels were obtained with free radical polymerization, and propargyl acrylate was added as a comonomer, which allowed for covalent immobilization of thiolated oligonucleotide probes into the hydrogel network, via thiol-yne photoclick chemistry. The comonomer was shown to significantly contribute to the immobilization of the probes based on fluorescence imaging. Two different immobilization approaches were demonstrated: during or after hydrogel synthesis. The second approach showed better loading capacity of the bioreceptor groups. Diffraction efficiency measurements of hydrogel gratings at 532 nm showed a selective response reaching a limit of detection in the complementary DNA strand of 2.47 µM. The label-free biosensor as designed could significantly contribute to direct and accurate analysis in medical diagnosis as it is cheap, easy to fabricate, and works without the need for further reagents.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Hidrogéis/química , Hibridização de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
2.
Gels ; 9(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754391

RESUMO

The role of volume hydrogel holographic gratings as optical transducers in sensor devices for point-of-care applications is increasing due to their ability to be functionalized for achieving enhanced selectivity. The first step in the development of these transducers is the optimization of the holographic recording process. The optimization aims at achieving gratings with reproducible diffraction efficiency, which remains stable after reiterative washings, typically required when working with analytes of a biological nature or several step tests. The recording process of volume phase transmission gratings within Acrylamide/Propargyl Acrylate hydrogel layers reported in this work was successfully performed, and the obtained diffraction gratings were optically characterized. Unslanted volume transmission gratings were recorded in the hydrogel layers diffraction efficiencies; up to 80% were achieved. Additionally, the recorded gratings demonstrated stability in water after multiple washing steps. The hydrogels, after functionalization with oligonucleotide probes, yields a specific hybridization response, recognizing the complementary strand as demonstrated by fluorescence. Analyte-sensitive hydrogel layers with holographic structures are a promising candidate for the next generation of in vitro diagnostic tests.

3.
Talanta ; 244: 123427, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390683

RESUMO

Analyte-sensitive DNA-based hydrogels find multiple applications in the field of biosensors due to their adaptable nature. Here, the design of DNA-based hydrogel and its application as sensing platform for the detection of a specific target sequence are presented. DNA-functionalized hydrogel structures were formed via a free radical co-polymerization process. A simple one-step probe immobilization procedure is reported: DNA probe molecules are added to the photoactive polymer mixture, dispensed onto a solid support, or a mold, and covalently attached while the hydrogel is formed through UV light exposure. Such hydrogels can be synthesized with desired recognition ability through the selection of a certain nucleotide sequence. Here we show the application of DNA-based hydrogel to detect the target with high performance in fluorescence microarray format and, additionally, to fabricate holographic surface relief gratings for label-free sensing assays.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Técnicas Biossensoriais/métodos , DNA/química , Sondas de DNA , Hidrogéis/química , Análise em Microsséries
4.
Bioact Mater ; 11: 230-239, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34977428

RESUMO

Electrospun fibers of shape memory triethoxysilane-terminated poly(epsilon-caprolactone) (PCL-TES) loaded with bioactive glasses (BG) are here presented. Unloaded PCL-TES, as well as PCL/BG nanocomposite fibers, are also considered for comparison. It is proposed that hydrolysis and condensation reactions take place between triethoxysilane groups of the polymer and the silanol groups at the BG particle surface, thus generating additional crosslinking points with respect to those present in the PCL-TES system. The as-spun PCL-TES/BG fibers display excellent shape memory properties, in terms of shape fixity and shape recovery ratios, without the need of a thermal crosslinking treatment. BG particles confer in vitro bioactivity to PCL-based nanocomposite fibers and favor the precipitation of hydroxycarbonate apatite on the fiber surface. Preliminary cytocompatibility tests demonstrate that the addition of BG particles to PCL-based polymer does not inhibit ST-2 cell viability. This novel approach of using bioactive glasses not only for their biological properties, but also for the enhancement of shape memory properties of PCL-based polymers, widens the versatility and suitability of the obtained composite fibers for a huge portfolio of biomedical applications.

5.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631970

RESUMO

The storage of time-stable holographic gratings in hydrogel matrices when the material is immersed in aqueous media is a real challenge at present. The optimization of the storage stages of the holograms must be properly investigated to identify the most suitable development processes. For this reason, this work is focused on the study of the optimization of the washing stages of the hydrogels based on acrylamide and N,N'-methylenebis(acrylamide) once unslanted transmission holograms have been stored. High-performance liquid chromatography and UV-visible measurements have been employed in our system to analyze the composition of the washing solutions. PBST and DMSO:H2O are used as solvents in the washing stages. The diffraction efficiencies are measured during the washing stages and after the storing of the holograms during several days in PBST. Maximum diffraction efficiencies of 38 and 27.6% are reached when PBST and DMSO:H2O are employed, respectively, for the washing process. Holograms show temporal stability after being stored immersed in PBST at 4 °C for 4 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA