Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675513

RESUMO

The mechanisms by which alcohol, alcoholic beverages, and their de-alcoholized derivatives affect animal physiology, metabolism, and gut microbiota have not yet been clarified. The polyphenol, monosaccharide, amino acid, and organic acid contents of four common alcoholic beverages (Chinese Baijiu, beer, Chinese Huangjiu, and wine) and their de-alcoholized counterparts were analyzed. The research further explored how these alcoholic beverages and their non-alcoholic versions affect obesity and gut microbiota, using a high-fat diet bee model created with 2% palm oil (PO). The results showed that wine, possessing the highest polyphenol content, and its de-alcoholized form, particularly when diluted five-fold (WDX5), markedly improved the health markers of PO-fed bees, including weight, triglycerides, and total cholesterol levels in blood lymphocytes. WDX5 treatment notably increased the presence of beneficial microbes such as Bartonella, Gilliamella, and Bifidobacterium, while decreasing Bombilactobacillus abundance. Moreover, WDX5 was found to closely resemble sucrose water (SUC) in terms of gut microbial function, significantly boosting short-chain fatty acids, lipopolysaccharide metabolism, and associated enzymatic pathways, thereby favorably affecting metabolic regulation and gut microbiota stability in bees.


Assuntos
Bebidas Alcoólicas , Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Abelhas , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Bebidas Alcoólicas/análise , Polifenóis/farmacologia , Polifenóis/análise
2.
Crit Rev Food Sci Nutr ; 63(23): 6379-6392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35125055

RESUMO

Gut microbiota (GM) is essential for host health, and changes in the GM are related to the development of various diseases. Recently, secretory immunoglobulin A (SIgA), the most abundant immunoglobulin isotype in the intestinal mucosa, has been found to play an essential role in controlling GM. SIgA dysfunction can lead to changes in the GM and is associated with the development of various GM-related diseases. Although in early stage, recent studies have shown that assorted dietary interventions, including vitamins, amino acids, fatty acids, polyphenols, oligo/polysaccharides, and probiotics, can influence the intestinal SIgA response and SIgA-GM interaction. Dietary intervention can enhance the SIgA response by directly regulating it (from top to bottom) or by regulating the GM structure or gene expression (from bottom to top). Furthermore, intensive studies involving the particular influence of dietary intervention on SIgA-binding to the GM and SIgA repertoire and the precise regulation of the SIgA response via dietary intervention are still exceedingly scarce and merit further consideration. This review summarizes the existing knowledge and (possible) mechanisms of the influence of dietary intervention on the SIgA-GM interaction. Key issues are considered, and the approaches in addressing these issues in future studies are also discussed.


Assuntos
Microbioma Gastrointestinal , Imunoglobulina A Secretora , Imunoglobulina A Secretora/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Dieta
3.
Food Microbiol ; 113: 104272, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098424

RESUMO

The color of mulberry wine is difficult to maintain since the main chromogenic substances, anthocyanins, are severely degraded during fermentation and aging. This study selected Saccharomyces cerevisiae I34 and Wickerhamomyces anomalus D6, both displaying high hydroxycinnamate decarboxylase (HCDC) activity (78.49% and 78.71%), to enhance the formation of stable vinylphenolic pyranoanthocyanins (VPAs) pigments during mulberry wine fermentation. The HCDC activity of 84 different strains from eight regions in China was primarily screened via the deep well plate micro fermentation method, after which the tolerance and brewing characteristics were evaluated via simulated mulberry juice. The two selected strains and a commercial Saccharomyces cerevisiae were then inoculated individually or sequentially into the fresh mulberry juice, while the anthocyanin precursors and VPAs were identified and quantified via UHPLC-ESI/MS. The results showed that the HCDC-active strains facilitated the synthesis of stable pigments, cyanidin-3-O-glucoside-4-vinylcatechol (VPC3G), and cyanidin-3-O-rutinoside-4-vinylcatechol (VPC3R), highlighting its potential for enhancing color stability.


Assuntos
Carboxiliases , Morus , Vinho , Antocianinas/metabolismo , Vinho/análise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Morus/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo
4.
Compr Rev Food Sci Food Saf ; 22(3): 1495-1516, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856535

RESUMO

Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 µg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.


Assuntos
Vitis , Vinho , Humanos , Uretana/análise , Vinho/análise , Bebidas Alcoólicas/análise , Carcinógenos/análise
5.
Compr Rev Food Sci Food Saf ; 22(2): 1128-1147, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717374

RESUMO

Phenolic acids (PAs), a class of small bioactive molecules widely distributed in food and mainly found as secondary plant metabolites, present significant advantages such as antioxidant activity and other health benefits. The global epidemic of nonalcoholic fatty liver disease (NAFLD) is becoming a serious public health problem. Existing studies showed that gut microbiota (GM) dysbiosis is highly associated with the occurrence and development of NAFLD. In recent years, progress has been made in the study of the relationship among PA compounds, GM, and NAFLD. PAs can regulate the composition and functions of the GM to promote human health, while GM can increase the dietary sources of PAs and improve its bioavailability. This paper discussed PAs, GM, and their interrelationship while introducing several representative dietary PA sources and examining the absorption and metabolism of PAs mediated by GM. It also summarizes the effect and mechanisms of PAs in improving and regulating NAFLD via GM and their metabolites. This helps to better evaluate the potential preventive effect of PAs on NAFLD via the regulation of GM and expands the utilization of PAs and PA-rich food resources.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Microbioma Gastrointestinal/fisiologia , Dieta , Disbiose
6.
Crit Rev Food Sci Nutr ; 62(26): 7199-7221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33909528

RESUMO

The colonization and maturation of gut microbiota (GM) is a delicate and precise process, which continues to influence not only infancy and childhood but also adulthood health by affecting immunity. However, many perinatal factors, including gestational age, delivery mode, antibiotic administration, feeding mode, and environmental and maternal factors, can disturb this well-designed process, increasing the morbidity of various gut dysbiosis-related diseases, such as type-1-diabetes, allergies, necrotizing enterocolitis, and obesity. In this review, we discussed the early-life colonization and maturation of the GM, factors influencing this process, and diseases related to the disruption of this process. Moreover, we focused on discussing dietary interventions, including probiotics, oligosaccharides, nutritional supplementation, and exclusive enteral nutrition, in ameliorating early-life dysbiosis and diseases related to it. Furthermore, possible mechanisms, and shortcomings, as well as potential solutions to the drawbacks of dietary interventions, were also discussed.


Assuntos
Enterocolite Necrosante , Microbioma Gastrointestinal , Probióticos , Adulto , Criança , Disbiose , Feminino , Humanos , Recém-Nascido , Avaliação de Resultados em Cuidados de Saúde , Gravidez
7.
Crit Rev Food Sci Nutr ; 62(32): 9053-9075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34142875

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become a surge burden worldwide due to its high prevalence, with complicated deterioration symptoms such as liver fibrosis and cancer. No effective drugs are available for NALFD so far. The rapid growth of clinical demand has prompted the treatment of NAFLD to become a research hotspot. Protocatechuic acid (PCA) is a natural secondary metabolite commonly found in fruits, vegetables, grains, and herbal medicine. It is also the major internal metabolites of anthocyanins and other polyphenols. In the present manuscript, food sources, metabolic absorption, and efficacy of PCA were summarized while analyzing its role in improving NAFLD, as well as the mechanism involved. The results indicated that PCA could ameliorate NAFLD by regulating glucose and lipid metabolism, oxidative stress and inflammation, gut microbiota and metabolites. It was proposed for the first time that PCA might reduce NAFLD by enhancing the energy consumption of brown adipose tissue (BAT). However, the PCA administration mode and dose for NAFLD remain inconclusive. Fresh insights into the specific molecular mechanisms are required, while clinical trials are essential in the future. This review provides new targets and reasoning for the clinical application of PCA in the prevention and treatment of NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Antocianinas/farmacologia , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/metabolismo , Fígado/metabolismo
8.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296484

RESUMO

Indigenous Saccharomyces cerevisiae, as a new and useful tool, can be used in fermentation to enhance the aroma characteristic qualities of the wine-production region. In this study, we used indigenous S. cerevisiae L59 and commercial S. cerevisiae FX10 to ferment Prince (a new hybrid variety from Lion Winery) wine, detected the basic physicochemical parameters and the dynamic changes of fungal communities during fermentation, and analyzed the correlations between fungal communities and volatile compounds. The results showed that the indigenous S. cerevisiae L59 could quickly adapt to the specific physicochemical conditions and microbial ecology of the grape must, showing a strong potential for winemaking. Compared with commercial S. cerevisiae FX10, the wine fermented by indigenous S. cerevisiae L59 contained more glycerol and less organic acids, contributing to a rounder taste. The results of volatile compounds indicated that the indigenous S. cerevisiae L59 had a positive effect on adding rosy, honey, pineapple and other sweet aroma characteristics to the wine. Overall, the study we performed showed that selection of indigenous S. cerevisiae from the wine-producing region as a starter for wine fermentation is conducive to improving the aroma profile of wine and preserving the aroma of the grape variety.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae , Vitis/química , Glicerol , Vinho/análise , Fermentação
9.
Molecules ; 27(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35807511

RESUMO

Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring. Gastric mucosal epithelial (GES-1) cells were used to elucidate the mechanism of MBE and rutin (the central part of MBE) helped protect against alcohol damage. The results revealed that phenolics accounted for the majority of MBE, accounting for 308.6 mg/g gallic acid equivalents and 108 substances were identified, including 37 flavonoids and 50 non-flavonoids. The treatment of 400 µg/mL MBE and 320 µM rutin reduced early cell apoptosis and the content of intracellular reactive oxygen species, malondialdehyde and increased glutathione. The qPCR results indicated that the MBE inhibits the expression of genes in the mitogen-activated protein kinase (MAPK) pathway, including p38, JNK, ERK and caspase-3; rutin inhibits the expression of p38 and caspase-3. Overall, MBE was able to reduce the oxidative stress of GES-1 cells and regulated apoptosis-related genes of the MAPK pathway. This study provides information for developing anti-ethanol injury drugs or functional foods.


Assuntos
Morus , Rutina , Apoptose , Caspase 3/metabolismo , Cromatografia Líquida , Etanol/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Morus/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutina/farmacologia , Espectrometria de Massas em Tandem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
FASEB J ; 34(6): 7810-7824, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350925

RESUMO

Brown adipose tissue (BAT) has long been recognized as an energy-consuming organ and a possible target for combating metabolism disorder. Although numerous studies have demonstrated the ability of phytochemical phenolic acids to improve obesity by activating BAT, the underlying mechanism or mechanism therein remain obscure. In this study, diet-induced obese mice, genetically obese mice, and C3H10T1/2 cells were used to examine the effects of p-Coumaric acid (CA) on metabolism profiles. The results showed that CA prevented metabolic syndromes in the two mice models through the activation of BAT. This phenomenon was closely linked to the upregulation of uncoupling protein 1 (UCP1) and the accelerated burning of fatty acids and glucose, which consequently enhanced the energy expenditure and thermogenesis. Similar results were also obtained in vitro. Importantly, these effects were mediated by the mammalian target of rapamycin complex 1 (mTORC1)-RPS6 pathway. These findings reveal, to the best of our knowledge for the first time, the close correlation between mTORC1-RPS6 and BAT-mediated thermogenesis, and, in addition, the key role played by mTORC1-RPS6 in mediating phenolic acids-induced activation of BAT, thus preventing obesity.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Obesidade/metabolismo , Obesidade/prevenção & controle , Propionatos/farmacologia , Proteína S6 Ribossômica/metabolismo , Termogênese/efeitos dos fármacos , Animais , Ácidos Cumáricos , Dieta , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
11.
J Nutr ; 150(8): 2131-2138, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533770

RESUMO

BACKGROUND: Although polyphenol-rich cranberry extracts reportedly have an antiobesity effect, the exact reason for this remains unclear. OBJECTIVES: In light of the reported health benefits of the polyphenolic compounds in cranberry, we investigated the effects and mechanism of a cranberry polyphenolic extract (CPE) in high-fat diet (HFD)-fed obese mice. METHODS: The distributions of individual CPE compounds were characterized by HPLC fingerprinting. Male C57BL/6J mice (4 wk old) were fed for 16 wk normal diet (ND, 10% fat energy) or HFD (60% fat energy) with or without 0.75% CPE in drinking water (HFD + CPE). Body and adipose depot weights, indices of glucose metabolism, energy expenditure (EE), and expression of genes related to brown adipose tissue (BAT) thermogenesis, and inguinal/epididymal white adipose tissue (iWAT/eWAT) browning were measured. RESULTS: After 16 wk, the body weight was 22.5% lower in the CPE-treated mice than in the HFD group but remained 17.9% higher than in the ND group. CPE treatment significantly increased EE compared with that of the ND and HFD groups. The elevated EE was linked with BAT thermogenesis, and iWAT/eWAT browning, shown by the induction of thermogenic genes, especially uncoupling protein 1 (Ucp1), and browning-related genes, including Cd137, a member of the tumor necrosis factor receptor superfamily (Tnfrsf9). The mRNA expression and abundance of uncoupling protein 1 in BAT of CPE-fed mice were 5.78 and 1.47 times higher than in the HFD group, and 0.61 and 1.12 times higher than in the ND group, respectively. Cd137 gene expression in iWAT and eWAT of CPE-fed mice were 2.35 and 3.13 times higher than in the HFD group, and 0.84 and 1.39 times higher than in the ND group, respectively. CONCLUSIONS: Dietary CPE reduced but did not normalize HFD-induced body weight gain in male C57BL/6J mice, possibly by affecting energy metabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Polifenóis/química , Termogênese/efeitos dos fármacos
12.
J Cell Mol Med ; 23(1): 143-154, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353639

RESUMO

Red wine consists of a large amount of compounds such as resveratrol, which exhibits chemopreventive and therapeutic effects against several types of cancers by targeting cancer driver molecules. In this study, we tested the anti-lung cancer activity of 11 red wine components and reported that a natural polyphenol compound ellagic acid (EA) inhibited lung cancer cell proliferation at an efficacy approximately equal to that of resveratrol. EA markedly increased the expression of the autophagosomal marker LC3-II as well as inactivation of the mechanistic target of rapamycin signalling pathway. EA elevated autophagy-associated cell death by down-regulating the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), and CIP2A overexpression attenuated EA-induced autophagy of lung cancer cells. Treating tumour-bearing mice with EA resulted in significant inhibition of tumour growth with suppression of CIP2A levels and increased autophagy. In addition, EA potentiated the inhibitory effects of the natural compound celastrol on lung cancer cells in vitro and in vivo by enhancing autophagy and down-regulating CIP2A. These findings indicate that EA may be a promising chemotherapeutic agent for lung cancer, and that the combination of EA and celastrol may have applicability for the treatment of this disease.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Ácido Elágico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autoantígenos/genética , Proliferação de Células/efeitos dos fármacos , Ácido Elágico/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Triterpenos Pentacíclicos , Polifenóis/farmacologia , Triterpenos/administração & dosagem , Vinho , Ensaios Antitumorais Modelo de Xenoenxerto
13.
FASEB J ; 31(1): 333-345, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049156

RESUMO

Increasing energy expenditure through activation of brown adipose tissue (BAT) is a critical approach to treating obesity and diabetes. In this study, rutin, a natural compound extracted from mulberry and a drug used as a capillary stabilizer clinically for many years without any side effects, regulated whole-body energy metabolism by enhancing BAT activity. Rutin treatment significantly reduced adiposity, increased energy expenditure, and improved glucose homeostasis in both genetically obese (Db/Db) and diet-induced obesity (DIO) mice. Rutin also induced brown-like adipocyte (beige) formation in subcutaneous adipose tissue in both obesity mouse models. Mechanistically, we found that rutin directly bound to and stabilized SIRT1, leading to hypoacetylation of peroxisome proliferator-activated receptor γ coactivator-1α protein, which stimulated Tfam transactivation and eventually augmented the number of mitochondria and UCP1 activity in BAT. These findings reveal that rutin is a novel small molecule that activates BAT and may provide a novel therapeutic approach to the treatment of metabolic disorders.-Yuan, X., Wei, G., You, Y., Huang, Y., Lee, H. J., Dong, M., Lin, J., Hu, T., Zhang, H., Zhang, C., Zhou, H., Ye, R., Qi, X., Zhai, B., Huang, W., Liu, S., Xie, W., Liu, Q., Liu, X., Cui, C., Li, D., Zhan, J., Cheng, J., Yuan, Z., Jin, W. Rutin ameliorates obesity through brown fat activation.


Assuntos
Tecido Adiposo Marrom/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Rutina/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Teste de Tolerância a Glucose , Células HEK293 , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Camundongos , Camundongos Obesos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
14.
Molecules ; 22(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467368

RESUMO

The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.


Assuntos
Cobre/farmacologia , Sequestradores de Radicais Livres/análise , Polifenóis/análise , Poluentes do Solo/farmacologia , Vitis/química , Vinho/análise , Benzotiazóis/química , Compostos de Bifenilo/química , Cor , Inocuidade dos Alimentos , Sequestradores de Radicais Livres/química , Radicais Livres/química , Picratos/química , Polifenóis/química , Ácidos Sulfônicos/química , Vitis/efeitos dos fármacos
15.
Molecules ; 20(12): 21442-57, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26633339

RESUMO

An efficient preparative separation method for Sphallerocarpus gracilis stems and leaves polyphenols (SGslP) was established in this study. An X-5 macroporous adsorption resin was selected for the purification of the SGslP, and the polyphenol content of the purified SGslP (PSGslP) was increased 5.11-fold from 8.29% to 42.38% after one treatment run. The chemical composition of the PSGslP was analyzed by HPLC-MS/MS, and the predominant compounds were found to be luteolin-7-glucoside, acacetin-7-acetyglycoside and its isomers. In addition, the PSGslP was evaluated in vitro to determine the DNA damage-protective activity and inhibitory effects of α-amylase and α-glucosidase. The results indicated that the PSGslP exhibited significant protective activities against both ROO• and •OH radical-induced DNA damage. Moreover, the PSGslP exerted a dose-dependent inhibition effect on α-glucosidase but no inhibitory effect on α-amylase. These findings indicate that the Sphallerocarpus gracilis stems and leaves are good natural sources of antioxidants and are potent inhibitors of α-glucosidase activity and are potential anti-diabetic inhibitor.


Assuntos
Apiaceae/química , Dano ao DNA/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Caules de Planta/química , Polifenóis/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Polifenóis/isolamento & purificação
16.
Plant Cell Rep ; 33(8): 1365-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24792421

RESUMO

KEY MESSAGE: Our study has identified and analyzed the VvARF gene family that may be associated with the development of grape berry and other tissues. Auxin response factors (ARFs) are transcription factors that regulate the expression of auxin responsive genes through specific binding to auxin response elements (AuxREs). The ARF genes are represented by a large multigene family in plants. Until now, many ARF families have been characterized based on genome resources. However, there is no specialized research about ARF genes in grapevine (Vitis vinifera). In this study, a comprehensive bioinformatics analysis of the grapevine ARF gene family is presented, including chromosomal locations, phylogenetic relationships, gene structures, conserved domains and expression profiles. Nineteen VvARF genes were identified and categorized into four groups (Classes 1, 2, 3 and 4). Most of VvARF proteins contain B3, AUX_RESP and AUX_IAA domains. The VvARF genes were widely expressed in a range of grape tissues, and fruit had higher transcript levels for most VvARFs detected in the EST sources. Furthermore, analysis of expression profiles indicated some VvARF genes may play important roles in the regulation of grape berry maturation processes. This study which provided basic genomic information for the grapevine ARF gene family will be useful in selecting candidate genes related to tissue development in grapevine and pave the way for further functional verification of these VvARF genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Ácidos Indolacéticos/metabolismo , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Vitis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Éxons/genética , Frutas/genética , Frutas/fisiologia , Perfilação da Expressão Gênica , Íntrons/genética , Filogenia , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Vitis/fisiologia
17.
Food Chem ; 449: 139213, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631134

RESUMO

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Assuntos
Fermentação , Aromatizantes , Odorantes , Pyrus , Saccharomyces cerevisiae , Sorbitol , Paladar , Vinho , Vinho/análise , Vinho/microbiologia , Pyrus/química , Pyrus/microbiologia , Pyrus/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Aromatizantes/metabolismo , Aromatizantes/química , Sorbitol/metabolismo , Sorbitol/análise , Odorantes/análise , Etanol/metabolismo , Etanol/análise , Pichia/metabolismo , Metschnikowia/metabolismo , Frutas/química , Frutas/microbiologia , Frutas/metabolismo
18.
Food Res Int ; 184: 114256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609234

RESUMO

Mycotoxins are important risk factors in beer. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine 10 mycotoxins in beer within 6 min. The method is fast, efficient, and has a simple and quick sample preparation. Validation was conducted based on the performance standards specified in Commission Decision 657/2002/EC, and the results demonstrated excellent linearity (R2 > 0.99), repeatability (RSD < 5 %), quantification limits (0.005-20.246 µg/L), and recovery rates (77 %-118 %). The prevalence of the 10 mycotoxins in 96 beers purchased from the Chinese market was analyzed, and the exposure of the Chinese population to mycotoxins through beer consumption was assessed. Deoxynivalenol (DON) was detected in 93.75 % of the beers, and the incidence of fumonisins (FBs) and zearalenone (ZEN) exceeded 50 %. Beer intake contributed significantly to the exposure of aflatoxins (AFs) and DON, especially in males. Correlation analysis between mycotoxin content in beer, raw materials, and the brewing process revealed that the brewing process significantly affected the content of DON (P < 0.001), while auxiliary materials also had a significant impact on the content of FBs and DON (P < 0.001). This study holds great significance in producing higher quality and safer beer.


Assuntos
Aflatoxinas , Micotoxinas , Masculino , Humanos , Cerveja , Cromatografia Líquida , Espectrometria de Massas em Tandem
19.
Food Chem X ; 22: 101301, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38559440

RESUMO

In this study, liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to analyze the prevalence of 10 mycotoxins in 140 samples from the Chinese market, aiming to assess the exposure of Chinese individuals to these mycotoxins through the consumption of wine, baijiu, and huangjiu. Mycotoxins were detected in 98% of the samples, with fumonisins (FBs), deoxynivalenol (DON), and zearalenone (ZEN) exhibiting positive rates exceeding 50%. Regarding the exposure of the Chinese population to mycotoxins resulting from alcoholic beverage consumption, fruit wine intake made a relatively significant contribution to aflatoxin exposure, while baijiu showed a relatively significant contribution to ZEN exposure (1.84%). The analysis of the correlation between grape variety, wine region, and mycotoxin content demonstrated that FBs, ZEN, and DON were significantly influenced by grape variety and wine region. This research holds great significance in protecting human life and health, as well as in the production of safer alcoholic beverages.

20.
Hortic Res ; 10(2): uhac261, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778186

RESUMO

Proanthocyanidins (PAs) and anthocyanins are involved in the response of plants to various environmental stresses. However, the mechanism behind defense-induced PA biosynthetic regulation is still not completely elucidated, also in grapevine. This study performed a transcriptome sequencing analysis of grape berries infected with Colletotrichum gloeosporioides to highlight the induction of the VabHLH137 factor from the basic helix-loop-helix (bHLH) XII subfamily by the fungus, which appeared to be significantly co-expressed with PA-related genes. The functional analysis of VabHLH137 overexpression and knockdown in transgenic grape calli showed that it positively regulated PA and anthocyanin biosynthesis. Moreover, VabHLH137 overexpression in the grape calli significantly increased resistance to C. gloeosporioides. A yeast one-hybrid and electrophoretic mobility shift assay revealed that VabHLH137 directly bound to the VaLAR2 promoter, enhancing its activity and interacting with VaMYBPAR, a transcriptional activator of PA biosynthesis. Furthermore, transient experiments showed that although the VabHLH137 + VaMYBPAR complex activated VaLAR2 expression, it failed to further enhance VaLAR2 expression compared to VaMYBPAR alone. The findings indicated that VabHLH137 enhanced PA biosynthesis by activating of VaLAR2 expression, providing new insight into the transcriptional regulation of defense-induced PA biosynthesis in grapevine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA