Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835615

RESUMO

Short-chain fatty acids (SCFAs) play a pivotal role in regulating the proliferation and development of bovine rumen epithelial cells (BRECs). G protein-coupled receptor 41 (GPR41) is involved in the signal transduction in BRECs as a receptor for SCFAs. Nevertheless, the impact of GPR41 on the proliferation of BRECs has not been reported. The results of this research showed that the knockdown of GPR41 (GRP41KD) decreased BRECs proliferation compared with the wild-type BRECs (WT) (p < 0.001). The RNA sequencing (RNA-seq) analysis showed that the gene expression profiles differed between WT and GPR41KD BRECs, with the major differential genes enriched in phosphatidylinositol 3-kinase (PIK3) signaling, cell cycle, and amino acid transport pathways (p < 0.05). The transcriptome data were further validated by Western blot and qRT-PCR. It was evident that the GPR41KD BRECs downregulated the level of the PIK3-Protein kinase B (AKT)-mammalian target of the rapamycin (mTOR) signaling pathway core genes, such as PIK3, AKT, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and mTOR contrasted with the WT cells (p < 0.01). Furthermore, the GPR41KD BRECs downregulated the level of Cyclin D2 p < 0.001) and Cyclin E2 (p < 0.05) compared with the WT cells. Therefore, it was proposed that GPR41 may affect the proliferation of BRECs by mediating the PIK3-AKT-mTOR signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Animais , Bovinos , Proliferação de Células , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rúmen , Serina-Treonina Quinases TOR/metabolismo
2.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 428-434, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35686558

RESUMO

Buffalo milk contains more polyunsaturated fatty acids than bovine milk. However, it is not clear about the effects of buffalo milk and bovine milk on lipid metabolism. In this study, a mouse model was used to explore the effects of buffalo milk and bovine milk on lipid metabolism in mice. The experiment was divided into three groups: a control group on a normal diet; a bovine milk group infused with bovine milk; a buffalo milk group infused with buffalo milk. We fed three groups of mice (n = 6) for 6 weeks. These results showed that bovine milk and buffalo milk had no effect on body weight gain. Bovine milk increased the content of ApoA1, ApoB and glucose in serum, compared with the control group, but buffalo milk has no profound change in serum ApoB. Remarkably, buffalo milk decreased the content of total cholesterol (TC) and triglyceride (TG) in the liver lipid profile, and also downregulated the expression of the carnitine palmitoyltransferase 2 (Cpt2) gene involved in the fatty acid oxidation in the liver. This study also found that bovine milk and buffalo milk did not cause the expression of pro-inflammatory factors in serum and colon tissues. This experiment proved that buffalo milk has beneficial effects on the regulation of lipid metabolism, and also does not affect the normal growth and pro-inflammatory response of the colon in mice. It provides a theoretical basis for future in-depth research on the special functions of buffalo milk and the development of buffalo milk functional foods.


Assuntos
Metabolismo dos Lipídeos , Leite , Camundongos , Animais , Leite/metabolismo , Búfalos , Ácidos Graxos/metabolismo , Fígado/metabolismo
3.
Curr Issues Mol Biol ; 44(11): 5234-5246, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36354668

RESUMO

Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 µg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 µg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 µg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 µg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release.

4.
J Dairy Sci ; 103(6): 5514-5524, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32278554

RESUMO

Approximately 15 to 50% of short-chain fatty acids (SCFA) reach the ruminant small intestine. Previous research suggests that activation of small intestinal gluconeogenesis induced by propionate has beneficial effects on energy homeostasis. However, the regulatory effect of propionate on key gluconeogenic genes in enterocytes of the bovine small intestine remains less known. Therefore, the purpose of this study was to establish the long-term cultures of bovine intestinal epithelial cells (BIEC) from bovine jejunum tissue using SV40T (1:200; Santa Cruz, Shanghai, China) and investigate the regulatory effect of propionate on the key gluconeogenic genes in BIEC. Our study showed that long-term BIEC cultures were established by SV40T-induced immortalization. Immortal BIEC were distinguished by the expression of cytokeratin 18, villin, fatty acid binding protein 2, and small intestine peptidase. The mRNA expression of genes involved in the SCFA transporters, monocarboxylate transporter 4, and Na+/H+ exchanger isoforms 1 were significantly elevated with 20 mM SCFA compared with untreated controls. In addition, BIEC exhibited significant uptake of propionate and butyrate from the culture medium. Remarkably, 3 mM propionate induced profound changes in mRNA level of key genes involved in gluconeogenesis, including phosphoenolpyruvate carboxykinase 2, pyruvate carboxylase, fructose-1,6-bisphosphatase 1, and peroxisome proliferator-activated receptor-γ coactivator 1α. Additionally, 3 mM propionate enhanced the expression of PGC1A mRNA at 3, 6, 12, and 24 h of incubation. These findings suggest that propionate controls the mRNA expression of genes involved in key enzymes for gluconeogenesis in the enterocytes of bovines.


Assuntos
Bovinos/fisiologia , Ácidos Graxos Voláteis/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Propionatos/farmacologia , Animais , Bovinos/genética , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Feminino , Gluconeogênese/genética , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Transportadores de Ácidos Monocarboxílicos/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Piruvato Carboxilase/genética , RNA Mensageiro/genética , Trocador 1 de Sódio-Hidrogênio/genética
5.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 409-417, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31876050

RESUMO

Short-chain fatty acids (SCFAs) play a critical role in regulation of rumen epithelial growth. The mechanisms underlying the regulatory effects of SCFAs on the proliferation of bovine rumen epithelial cells (BRECs) remain unknown; however, SCFAs can bind to G protein-coupled receptor 41 (GPR41); hence, the regulatory effects of SCFAs on BRECs proliferation may be mediated by GPR41. Here, we investigated the molecular mechanisms underlying the effects of SCFAs and GPR41 on BRECs proliferation. We demonstrated that SCFAs activate the expression of GPR41 and inhibit (p < .05) BRECs proliferation, while the GPR41 knockdown (GPR41KD) BRECs exhibited (p < .05) slow proliferation compared with controls. The treatment of BRECs with 10 mM SCFAs significantly enhanced (p < .05) expression of cyclin-dependent kinase inhibitors 1A (CDKN1A), 2A (CDKN2A) and 2B (CDKN2B) and inhibited (p < .05) their transition from G1 to S phase of the cell cycle, compared with controls. Remarkably, the GPR41KD BRECs treated with SCFAs restored high level of CDKN1A, relative to GPR41KD BRECs, but did not affect (p > .05) the expression of CDKN2A and CDKN2B. The GPR41KD BRECs had significantly reduced (p < .05) cyclin-dependent kinase 4 (CDK4) and cyclin D2 mRNA abundance compared with controls. The GPR41KD BRECs treated with SCFAs significantly decreased (p < .05) CDK4, cyclin D2, CDKN2A and CDKN2B mRNA abundance compared with BRECs treated with SCFAs. Overall, our results demonstrated that downregulation of CDK4 and cyclin D2 likely mediates the inhibitory effects of GPR41KD on BRECs proliferation. Additionally, CDKN1A plays a vital role in mediating the inhibitory effect of SCFAs on the BRECs proliferation, and that these changes are not mediated by GPR41.


Assuntos
Bovinos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Rúmen/citologia , Animais , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Asian-Australas J Anim Sci ; 30(9): 1261-1269, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28183168

RESUMO

OBJECTIVE: The effect of flavonoids from alfalfa on the microbial flora was determined using molecular techniques of 16S ribosome deoxyribonucleic acid (rDNA) analysis. METHODS: Four primiparous Holstein heifers fitted with ruminal cannulas were used in a 4×4 Latin square design and fed a total mixed ration to which alfalfa flavonoids extract (AFE) was added at the rates of 0 (A, control), 20 (B), 60 (C), or 100 (D) mg per kg of heifer BW. RESULTS: The number of operational taxonomic units in heifers given higher levels of flavonoid extract (C and D) was higher than for the two other treatments. The Shannon, Ace, and Chao indices for treatment C were significantly higher than for the other treatments (p<0.05). The number of phyla and genera increased linearly with increasing dietary supplementation of AFE (p<0.05). The principal co-ordinates analysis plot showed substantial differences in the microbial flora for the four treatments. The microbial flora in treatment A was similar to that in B, C, and D were similar by the weighted analysis. The richness of Tenericutes at the phylum level tended to increase with increasing AFE (p = 0.10). The proportion of Euryarchaeota at the phylum level increased linearly, whereas the proportion of Fusobacteria decreased linearly with increasing AFE supplementation (p = 0.04). The percentage of Mogibacterium, Pyramidobacter, and Asteroleplasma at the genus level decreased linearly with increasing AFE (p<0.05). The abundance of Spirochaeta, Succinivibrio, and Suttonella at the genus level tended to decrease linearly with increasing AFE (0.05

7.
Asian-Australas J Anim Sci ; 30(10): 1416-1424, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28423878

RESUMO

OBJECTIVE: The objective of this study was to examine the effects of alfalfa flavonoids on the production performance, immunity, and ruminal fermentation of dairy cows. METHODS: The experiments employed four primiparous Holstein cows fitted with ruminal cannulas, and used a 4×4 Latin square design. Cattle were fed total mixed ration supplemented with 0 (control group, Con), 20, 60, or 100 mg of alfalfa flavonoids extract (AFE) per kg of dairy cow body weight (BW). RESULTS: The feed intake of the group receiving 60 mg/kg BW of AFE were significantly higher (p<0.05) than that of the group receiving 100 mg/kg BW. Milk yields and the fat, protein and lactose of milk were unaffected by AFE, while the total solids content of milk reduced (p = 0.05) linearly as AFE supplementation was increased. The somatic cell count of milk in group receiving 60 mg/kg BW of AFE was significantly lower (p<0.05) than that of the control group. Apparent total-tract digestibility of neutral detergent fiber and crude protein showed a tendency to increase (0.05

8.
Animals (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38254458

RESUMO

This experiment investigated the effects of different levels of bile acid (BA) additives in diets on the lactation performance, serum antioxidant metabolites, and serum biochemical indices of 60 multiparous mid-lactation dairy cows. The cows were randomized to receive one of the four homogeneous treatments, with the BA preparation supplemented at 0, 6, 12, and 18 g/head/d. The experiment lasted for 14 weeks. The first 2 weeks were the pre-feeding period. The milk yield and composition data were recorded weekly, and the dry matter intake and antioxidative blood index were analyzed on the 6th, 10th, and 14th weeks of the study. On the 84th day of the experiment, the experimental group exhibited significantly higher levels of total protein and albumin, by 57.5% and 55.6%, respectively, compared to the control group (p < 0.05). On both the 28th and 84th days of the trial, the experimental group showed a markedly higher lipase content compared to the control group, by 26.5% and 25.2%, respectively (p < 0.05). Furthermore, the experimental group displayed notably elevated levels of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity, surpassing the control group by 17.4%, 21.6%, and 8.7%, respectively. In conclusion, BA additives improve the serum antioxidant indices of dairy cows, thereby enhancing the performance of these cows.

9.
Front Neurol ; 15: 1378362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798710

RESUMO

Objective: Bronchial Asthma (BA) is a common chronic respiratory disease worldwide. Earlier research has demonstrated abnormal functional connectivity (FC) in multiple cognition-related cortices in asthma patients. The thalamus (Thal) serves as a relay center for transmitting sensory signals, yet the modifications in the thalamic FC among individuals with asthma remain uncertain. This research employed the resting-state functional connectivity (rsFC) approach to explore alterations in thalamic functional connectivity among individuals with BA. Patients and methods: After excluding participants who did not meet the criteria, this study finally included 31 patients with BA, with a gender distribution of 16 males and 15 females. Subsequently, we recruited 31 healthy control participants (HC) matched for age, gender, and educational background. All participants underwent the Montreal Cognitive Assessment (MoCA) and the Hamilton Depression Rating Scale (HAMD) assessment. Following this, both groups underwent head magnetic resonance imaging scans, and resting-state functional magnetic resonance imaging (rs-fMRI) data was collected. Based on the AAL (Automated Anatomical Labeling) template, the bilateral thalamic regions were used as seed points (ROI) for subsequent rsFC research. Pearson correlation analysis was used to explore the relationship between thalamic functional connectivity and neuropsychological scales in both groups. After controlling for potential confounding factors such as age, gender, intelligence, and emotional level, a two-sample t-test was further used to explore differences in thalamic functional connectivity between the two groups of participants. Result: Compared to the HC group, the BA group demonstrated heightened functional connectivity (FC) between the left thalamus and the left cerebellar posterior lobe (CPL), left postcentral gyrus (PCG), and right superior frontal gyrus (SFG). Concurrently, there was a decrease in FC with both the Lentiform Nucleus (LN) and the left corpus callosum (CC). Performing FC analysis with the right thalamus as the Region of Interest (ROI) revealed an increase in FC between the right thalamus and the right SFG as well as the left CPL. Conversely, a decrease in FC was observed between the right thalamus and the right LN as well as the left CC. Conclusion: In our study, we have verified the presence of aberrant FC patterns in the thalamus of BA patients. When compared to HCs, BA patients exhibit aberrant alterations in FC between the thalamus and various brain areas connected to vision, hearing, emotional regulation, cognitive control, somatic sensations, and wakefulness. This provides further confirmation of the substantial role played by the thalamus in the advancement of BA.

10.
Anim Nutr ; 16: 338-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362515

RESUMO

Glucose plays a vital part in milk protein synthesis through the mTOR signaling pathway in bovine mammary epithelial cells (BMEC). The objectives of this study were to determine how glucose affects hexokinase (HK) activity in BMEC and investigate the regulatory effect of HK in kappa casein (CSN3) synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in BMEC. For this, HK1 and HK2 were knocked out in BMEC using the CRISPR/Cas9 system. The gene and protein expression, glucose uptake, and cell proliferation were measured. We found that glucose uptake, cell proliferation, CSN3 gene expression levels, and expression of HK1 and HK2 increased with increasing glucose concentrations. Notably, glucose uptake was significantly reduced in HK2 knockout (HK2KO) BMEC treated with 17.5 mM glucose. Moreover, under the same glucose treatment conditions, the proliferative ability and abundance of CSN3 were significantly diminished in both HK1 knockout (HK1KO) and HK2KO BMEC compared with that in wild-type BEMC. We further observed that the phosphorylation levels of ribosome protein subunit 6 kinase 1 (S6K1) were reduced in HK1KO and HK2KO BMEC following treatment with 17.5 mM glucose. As expected, the levels of glucose-6-phosphate and the mRNA expression levels of glycolysis-related genes were decreased in both HK1KO and HK2KO BMEC following glucose treatment. These results indicated that the knockout of HK1 and HK2 inhibited cell proliferation and CSN3 expression in BMEC under glucose treatment, which may be associated with the inactivation of the S6K1 and inhibition of glycolysis.

11.
Front Hum Neurosci ; 17: 1228541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098762

RESUMO

Purpose: To explore the regions of aberrant spontaneous brain activity in asthma patients and their potential impacts using the Percent amplitude of fluctuation (PerAF) analysis method. Patients and methods: In this study, a total of 31 bronchial asthma (BA) patients were ultimately included, comprising 17 males and 14 females. Subsequently, 31 healthy control subjects (HCS) were recruited, consisting of 17 males and 14 females, and they were matched with the BA group based on age, sex, and educational status. The PerAF analysis technique was employed to study the differences in spontaneous brain activity between the two groups. The SPM12 toolkit was used to carry out a two sample t-test on the collected fMRI data, in order to examine the differences in PerAF values between the asthma patients and the healthy controls. We employed the Montreal Cognitive Assessment (MoCA) scale and the Hamilton Depression Scale (HAMD) to evaluate the cognitive and emotional states of the two groups. Pearson correlation analysis was utilized to ascertain the relationship between changes in the PerAF values within specific brain regions and cognitive as well as emotional conditions. Results: Compared with the healthy control group, areas of the brain with reduced PerAF in asthma patients included the inferior cerebellum, fusiform gyrus, right inferior orbital frontal gyrus, left middle orbital frontal gyrus, left/right middle frontal gyrus (MFG), dorsal lateral superior frontal gyrus (SFGdl), left superior temporal gyrus (STG), precuneus, right inferior parietal lobule (IPL), and left/right angular gyrus. BA patients exhibit mild cognitive impairments and a propensity for emotional disturbances. Furthermore, the perAF values of the SFGdl region are significantly positively correlated with the results of the MoCA cognitive assessment, while negatively correlated with the HAMD evaluation. Conclusion: Through the application of PerAF analysis methods, we discovered that several brain regions in asthma patients that control the amplitude of respiration, vision, memory, language, attention, and emotional control display abnormal changes in intrinsic brain activity. This helps characterize the neural mechanisms behind cognitive, sensory, and motor function impairments in asthma patients, providing valuable insights for potential therapeutic targets and disease management strategies.

12.
Animals (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830470

RESUMO

Tea tree oil (TTO) plays an important role in regulating lipid metabolism and has anti-inflammatory properties. In postpartum dairy cows, dry matter intake (DMI) is dramatically decreased, resulting in lipid metabolism disorder and the systemic pro-inflammatory response. However, the effects of TTO on glucolipid metabolism and immunity in postpartum dairy cows remain uninvestigated. Therefore, this study aimed to evaluate the effects of TTO on production performance, serum biochemical indicators, and immunity in postpartum dairy cows. Our results demonstrate that DMI tended to increase (p = 0.07) in the total mixed ration (TMR) diets supplemented with 0.01% TTO/dry matter (DM) basis relative to that in the control group. The 4% fat-corrected milk (FCM) content in the 0.01% and 0.02% TTO groups showed an increase (p = 0.09) compared with that in the control. Remarkably, the levels of globulin (GLO) and immunoglobulin G (IgG) were elevated (p < 0.05) in the TMR diet supplemented with 0.02% TTO compared to those in the control group. The TTO caused no profound changes in cholesterol (CHO), triglyceride (TG), high-density lipoprotein (HDL), or low-density lipoprotein (LDL). Notably, 0.02% TTO increased (p < 0.05) the serum glucose concentration relative to that in the control group. In conclusion, our results demonstrate that TTO could improve glucolipid metabolism and enhance immunity in postpartum dairy cows. It may be a novel resolution strategy for body condition recovery and the improvement of milk performance.

13.
Animals (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37684984

RESUMO

Excessive lipid mobilization will snatch cell membrane lipids in postpartum dairy cows, which may impair the function of immune cells, including peripheral mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). Acetate, as a precursor and the energy source of milk fat synthesis, plays a key role in lipid synthesis and the energy supply of dairy cows. However, there is little information about the effect of sodium acetate (NaAc) on the immune function of PBMC and PMN in postpartum dairy cows. Therefore, this study aimed to evaluate the effects of NaAc on the immune functions of PBMCs and PMNs in postpartum dairy cows. In this experiment, twenty-four postpartum multiparous Holstein cows were randomly selected and divided into a NaAc treatment group and a control group. Our results demonstrated that the dietary addition of NaAc increased (p < 0.05) the number of monocytes and the monocyte ratio, suggesting that these postpartum cows fed with NaAc may have better immunity. These expressions of genes (LAP, XBP1, and TAP) involved in the antimicrobial activity in PBMCs were elevated (p < 0.05), suggesting that postpartum dairy cows supplemented with NaAc had the ability of antimicrobial activity. In addition, the mRNA expression of the monocarboxylate transporters MCT1 and MCT4 in PBMCs was increased (p < 0.05) in diets supplemented with NaAc in comparison to the control. Notably, the expression of the XBP1 gene related to antimicrobial activity in PMN was upregulated with the addition of NaAc. The mRNA expression of genes (TLN1, ITGB2, and SELL) involved in adhesion was profoundly increased (p < 0.05) in the NaAc groups. In conclusion, our study provided a novel resolution strategy in which the use of NaAc can contribute to immunity in postpartum dairy cows by enhancing the ability of antimicrobial and adhesion in PBMCs and PMNs.

14.
Toxins (Basel) ; 15(8)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37624269

RESUMO

Subacute rumen acidosis (SARA) will cause an increase in endotoxin, which will have a negative effect on the bovine rumen epithelial cells (BREC). Flavonoids are effective in treating inflammation caused by endotoxin. Quercetin is a vital flavonoid widely occurring in fruits and vegetables and has received significant interest as a prospective anti-inflammatory antioxidant. Nonetheless, quercetin's protective machinery against such damage to BREC induced by lipopolysaccharide (LPS) remains unclear. A combined quercetin and LPS-induced BREC inflammation model was utilized to elucidate the effect of quercetin protecting BREC from LPS-induced injury. After treating BREC with different doses of LPS (1, 5, and 10 µg/mL) for 6 h or 24 h, the mRNA expression of inflammatory factors was detected. Our experimental results show the establishment of the BREC inflammation model via mRNA high expression of pro-inflammatory cytokines in BREC following 6 h treatment with 1 µg/mL LPS. The promotive effect of 80 µg/mL quercetin on BREC growth via the cell counting kit-8 (CCK8) assay was observed. The expression of pro-inflammatory cytokines and chemokines, notably tumor necrosis factor α (TNF-α), Interleukin 1ß (IL-1ß), IL-6, CC-motif chemokine ligand 2 (CCL2), CCL20, CCL28, and CXC motif chemokine 9 (CXCL9), etc., was significantly reduced by quercetin supplementation. We also analyzed the mRNA detection of related pathways by qRT-PCR. Our validation studies demonstrated that quercetin markedly curbed the mRNA expression of the toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the nuclear factor-κB (NF-κB) in LPS-treated BREC. In addition, western blot result outcomes confirmed, as expected, that LPS significantly activated phosphorylation of p44/42 extracellular regulated protein kinases (ERK1/2) and NF-κB. Unexpectedly, this effect was reversed by adding quercetin. To complement western blot results, we assessed p-ERK1/2 and p-p65 protein expression using immunofluorescence, which gave consistent results. Therefore, quercetin's capacity to bar the TLR4-mediated NF-κB and MAPK signaling pathways may be the cause of its anti-inflammatory effects on LPS-induced inflammatory reactions in BREC. According to these results, quercetin may be utilized as an anti-inflammatory medication to alleviate inflammation brought on by high-grain feed, and it also lays out a conceptual foundation regarding the development and utilization of quercetin in the later stage.


Assuntos
Lipopolissacarídeos , NF-kappa B , Bovinos , Animais , Lipopolissacarídeos/toxicidade , Quercetina/farmacologia , Rúmen , Receptor 4 Toll-Like/genética , Estresse Oxidativo , Células Epiteliais , Endotoxinas , Flavonoides , Sistema de Sinalização das MAP Quinases
15.
Animals (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685035

RESUMO

This study aimed to assess the effects of partially substituting soybean meal in the diet with slow-release urea (SRU) on the lactation performance, heat shock signal molecules, and environmental sustainability of heat-stressed lactating cows in the middle stage of lactation. In this study, 30 healthy Holstein lactating dairy cattle with a similar milk yield of 22.8 ± 3.3 kg, days in milk of 191.14 ± 27.24 days, and 2.2 ± 1.5 parity were selected and randomly allocated into two groups. The constituents of the two treatments were (1) basic diet plus 500 g soybean meal (SM) for the SM group and (2) basic diet plus 100 g slow-release urea and 400 g corn silage for the SRU group. The average temperature humidity index (THI) during the experiment was 84.47, with an average THI of >78 from day 1 to day 28, indicating the cow experienced moderate heat stress conditions. Compared with the SM group, the SRU group showed decreasing body temperature and respiratory rate trends at 20:00 (p < 0.1). The substitution of SM with SRU resulted in an increasing trend in milk yield, with a significant increase of 7.36% compared to the SM group (p < 0.1). Compared to the SM group, AST, ALT, and γ-GT content levels were significantly increased (p < 0.05). Notably, the levels of HSP-70 and HSP-90α were significantly reduced (p < 0.05). The SRU group showed significantly increased acetate and isovalerate concentrations compared with the SM group (p < 0.05). The prediction results indicate that the SRU group exhibits a significant decrease in methane (CH4) emissions when producing 1 L of milk compared to the SM group (p < 0.05). In summary, dietary supplementation with SRU tended to increase the milk yield and rumen fermentation and reduce plasma heat shock molecules in mid-lactation, heat-stressed dairy cows. In the hot summer, using SRU instead of some soybean meal in the diet alleviates the heat stress of dairy cows and reduces the production of CH4.

16.
Animals (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003112

RESUMO

Glucose and amino acids are important sources of nutrients in the synthetic milk of dairy cows, and understanding the fate of amino acids is essential to optimize the utilization of amino acids in milk protein synthesis, thereby reducing nutrient inefficiencies during lactation. The purpose of this study was to investigate the effects of LPS and different concentrations of glucose on (1) the expression of inflammatory factors and genes, (2) the glucose metabolism, and (3) amino acid utilization in BMECs. The results showed that there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose content in the inflammatory cytokine genes (IL-6 and TNF-α) and the inflammatory regulatory genes (CXCL2, CXCL8, and CCL5). With the addition of LPS, the HG + LPS group caused downregulated (p < 0.05) expression of IL-6 and TNF-α, compared with the LG + LPS group. Interestingly, compared with the LG + LPS group, the HG + LPS group upregulated (p < 0.05) the expression of CXCL2, CXCL8, and CCL5. LPS supplementation increased (p = 0.056) the consumption of glucose and GLUT1 gene expression (p < 0.05) and tended to increase (p = 0.084) the LDHA gene expression of BMECs under conditions of different concentrations of glucose culture. High glucose content increased (p < 0.001) the consumption of glucose and enhanced (p < 0.05) the GLUT1, HK1, HK2, and LDHA gene expression of BMECs with or without LPS incubation, and there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose concentrations in GLUT1 gene expression. In this study, LPS enhanced (p < 0.05) the consumption of amino acids such as tryptophan, leucine, isoleucine, methionine, valine, histidine, and glutamate, while high levels of glucose decreased (p < 0.01) consumption, except in the case of tyrosine. For histidine, leucine, isoleucine, and valine consumption, there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose levels. Overall, these findings suggest that relatively high glucose concentrations may lessen the LPS-induced BMEC inflammatory response and reduce amino acid consumption, while low glucose concentrations may increase the demand for most amino acids through proinflammatory responses.

17.
Pest Manag Sci ; 79(1): 357-367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36176057

RESUMO

BACKGROUND: The oligophagous potato tuber moth (PTM), Phthorimaea operculella, and the polyphagous beet armyworm (BAW), Spodoptera exigua, are two destructive pests of potato, and infestations can lead to serious reduction in potato yield. However, potato plant responses to the two herbivories are only poorly understood. Endogenous jasmonoyl-isoleucine (JA-Ile) is a signal responsible for the induction of plant anti-herbivore defenses. Elevation of JA-Ile by blocking its catabolism is considered to be an effective and sustainable approach to enhance plant resistance to insect pests. However, it is not clear whether this approach can enhance potato resistance to PTM and BAW. RESULTS: We demonstrated that the transcriptional changes induced by simulated PTM and BAW feeding overlap to a large extent, and that 81.5% of the PTM- and 90.5% of the BAW-responsive genes were commonly regulated. We also generated potato transgenic lines, irStCYP94B3s, in which the three JA-Ile hydroxylases were all simultaneously silenced. These lines exhibited enhanced resistance only to BAW, but not to PTM, although levels of JA-Ile and its downstream induced defensive chemicals, including caffeoylputrescine, dicaffeoylspermidine, lyciumoside II, and the nicotianosides I, II, and VII, were all present at higher levels in PTM-infested than in BAW-infested irStCYP94B3s lines. CONCLUSION: Our results provide support for the hypothesis that StCYP94B3 genes are able to act as potential targets for the control of polyphagous insect pests in potato, and reveal that the oligophagous PTM has evolved an effective mechanism to cope with JA-Ile-induced anti-herbivore defenses. © 2022 Society of Chemical Industry.


Assuntos
Beta vulgaris , Mariposas , Solanum tuberosum , Animais , Solanum tuberosum/genética , Mariposas/genética
18.
Animals (Basel) ; 12(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883337

RESUMO

The E2F family of transcription factor is divided into activators and repressors that control cell proliferation. Bovine mammary epithelial cells (BMECs) can be immortalized using human papillomavirus 16 E6E7 (HPV16 E6E7) and simian vacuolating virus 40 large T antigen (SV40T). In addition, SV40T does not require E2F1, E2F2, and E2F3 activators to induce proliferation in mouse embryo fibroblasts (MEFs). However, we report that E2F3 activator is required to induce the proliferation of BMECs. Our results showed that, at an early stage, primary BMECs lacking the E2F1 expression have the capacity to proliferate and show E2F2 and E2F3 slight protein levels. At a late stage, primary BMECs deficient for E2F3 completely abolish any proliferative ability and exhibit a severe cell senescence signal, although the E2F2 can be expressed at a late stage of primary BMECs. Compared with the late stage of primary BMECs, the BMECs immortalized by SV40T and E6E7 restored the protein level of E2F3 and enhanced the CDK4, CDK6, cyclin D3, and CDK2 protein level, leading to proliferating robustly. Surprisingly, it was found that p53, p21Cip1, and p27Kip1 were upregulated in SV40T and E6E7-immortalized BMECs, relatively to primary BMECs. Notably, Cdc2 was almost expressed in primary BMECs. However, Cdc2 was elevated in BMECs immortalized by SV40T and E6E7. In conclusion, this study revealed a molecular mechanism where E2F3 controls the BMECs' proliferation and senescence.

19.
Front Vet Sci ; 9: 981640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118357

RESUMO

Bovine liver mainly utilizes the propionate as a gluconeogenic substrate to synthesize the glucose. However, the mechanism underlying the regulatory effects of propionate on the glucose production in bovine hepatocytes remains less known. Previous studies have demonstrated G protein-coupled receptor 41 (GPR41) as receptors for propionate. We hypothesized that propionate may regulate the glucose production by GPR41 in bovine hepatocytes. Therefore, the aim of the study was to investigate the regulatory effects of propionate and GPR41 on glucose production in bovine hepatocytes. Hepatocytes with GPR41 overexpression were incubated in the presence of either 0 or 3 mM propionate for 24 h. These results showed that the expression of phosphoenolpyruvate carboxykinase 2 (PCK2) and pyruvate carboxylase (PC) genes involved in gluconeogenesis was enhanced (P < 0.01) with propionate treatment. Remarkably, the addition of propionate promotes the glucose production in bovine hepatocytes. Expression of GPR41 was increased by the addition of propionate in bovine hepatocytes overexpressed GPR41 by overexpression plasmid AAV1 compared with the absence of propionate. Interestingly, expression of PCK2 was markedly attenuated in GPR41 overexpressed-hepatocytes with propionate. Importantly, overexpression of GPR41 attenuated glucose output in propionate-induced bovine hepatocytes. These findings revealed that GPR41 negatively regulates glucose production by downregulating the expression of PCK2 in propionate-induced bovine hepatocytes.

20.
Front Nutr ; 9: 842634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600833

RESUMO

This study aimed to evaluate whether sodium butyrate (SB) attenuates the ruminal response to LPS-stimulated inflammation by activating GPR41 in bovine rumen epithelial cells (BRECs). We examined the SB regulation of GPR41 and its impact on LPS-induced inflammation using GPR41 knockdown BRECs. The LPS-induced BRECs showed increases in the expression of genes related to pro-inflammation and decreases in the expression of genes related to tight junction proteins; these were attenuated by pretreatment with SB. Compared with that in LPS-stimulated BRECs, the ratio of phosphorylated NF-κB (p65 subunit) to NF-κB (p65 subunit) and the ratio of phosphorylated IκBα to IκBα were suppressed with SB pretreatment. The LSB group abated LPS-induced apoptosis and decreased the expression of Bax, Caspase 3, and Caspase 9 mRNA relative to the LPS group. In addition, the LSB group had a lower proportion of cells in the G0-G1 phase and a higher proportion of cells in the S phase than the LPS group. The mRNA expression of ACAT1 and BDH1 genes related to volatile fatty acid (VFA) metabolism were upregulated in the LSB group compared to those in LPS-induced BRECs. In addition, pretreatment with SB promoted the gene expression of GPR41 in the LPS-induced BRECs. Interestingly, SB pretreatment protected BRECs but not GPR41KD BRECs. Our results suggest that SB pretreatment protects against the changes in BRECs LPS-induced inflammatory response by activating GPR41.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA