Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(1): 542-553, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894692

RESUMO

The structural design of multiple functional components could integrate synergistic effects to enhance the catalytic performance of MoS2-based composites for catalytic applications. Herein, one-dimensional (1D) Co-MoS2/Pd@NCMTs composites were designed to prepare Co-doped MoS2/Pd nanosheets (NSs) on N-doped carbon microtubes (NCMTs) from tubular polypyrrole (PPy) as multifunctional catalysts. The Co-MoS2/Pd@NCMTs composites integrated the synergistic effects of Co-doping, a 1D tubular structure, and noble-metal Pd decoration. Thus, a higher catalytic activity was observed in 4-nitrophenol (4-NP) reduction and peroxidase-like catalysis than other components, such as MoS2, MoS2@NCMTs, and Co-MoS2@NCMTs. Remarkably, the results indicated that the dissolution, diffusion, and redistribution led to the dissolution of MoO3@ZIF-67 cores and generation of Co-doped MoS2 NSs. Benefiting from the synergistic effect from these components, Co-MoS2/Pd@NCMTs were considered as a facile colorimetric sensing platform for detecting tannic acid. Moreover, outstanding performance was realized in the reduction of 4-NP with the composites. Thus, we provide a simple synthetic strategy for simultaneously integrating electronic engineering and structural advantages to develop an efficient MoS2-based multifunctional catalyst.

2.
Dalton Trans ; 51(8): 3170-3179, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35113099

RESUMO

The integration of noble metal nanoparticles (NPs) on magnetic hollow structures is of particular importance for high catalytic activity, while the magnetic property is useful for the recovery of the composites. Herein, we prepared Ag NP decorated Fe3O4@C hollow magnetic microtubes by a facile and controllable approach. To this end, tannic acid-ferric ion (TA-Fe) first polymerized in situ on the MoO3@FeOOH microrods and served as a reducing/stabilizing agent to integrate Ag NPs with high coverage. Moreover, no extra reductant was required owing to the reducibility of TA for the formation of FeOOH@TA-Fe/Ag microtubes. After thermal treatment under an N2 atmosphere, hollow Fe3O4@C-Ag microtubes are obtained with a high surface area and excellent magnetism. Remarkable catalytic activity was achieved towards the reduction of 4-nitrophenol (4-NP) owing to the high coverage of Ag NPs on the tube-like structure, while the composite was easily collected with an external magnet. The integration of Ag NPs and the magnetic hollow structure provides a great platform for designing hybrid catalysts with high efficiency and recoverability.

3.
Dalton Trans ; 50(42): 15380-15388, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34643209

RESUMO

Molybdenum disulfide (MoS2) nanosheets have been found to exhibit intrinsic peroxidase-like activity that could be applied in colorimetric sensing platforms. However, their poor conductivity and few exposed edge sites often lead to poor catalytic activity, impeding the application of MoS2 nanosheets in enzyme-like catalysis. Here, a novel strategy was developed to selectively deposit Fe-doped MoS2 nanosheets on polypyrrole microtubes to obtain Fe-MoS2@PPy microtubes to address these issues. In the synthesized Fe-MoS2@PPy microtubes, PPy microtubes can not only be used as a conductive support to promote the electron transfer, but also greatly alleviate the aggregations of MoS2 nanosheets, and thus improve the enzyme-like activity. Meanwhile, additional active sites, formed by Fe doping, also endow the catalyst with excellent activity in enzyme-like catalysis. Notably, in the process of sulfidation, the dissolution, redistribution and diffusion result in the disappearance of MoO3@FeOOH cores and the formation of Fe doped MoS2 nanosheets, which significantly facilitate the deposition of Fe-doped MoS2 nanosheets on PPy microtubes. On the basis of the high peroxidase-like catalytic efficiency of the Fe-MoS2@PPy microtubes, a simple and convenient colorimetric strategy for the rapid and sensitive detection of L-cysteine has been developed. This strategy introduces both the PPy layer and Fe doping to increase the conductivity and the density of active sites of MoS2 nanosheets, thus enhancing the catalytic activity and stability. More importantly, Fe-MoS2@PPy microtubes could be used as a good support for loading other materials such as Au and Ag nanoparticles (NPs), forming ternary Fe-MoS2/Ag, Au@PPy nanotubes. This work offers an opportunity to develop low-cost and highly active MoS2-based nanocomposites for promising potential applications in electrochemical energy conversion and medical diagnostics.


Assuntos
Dissulfetos , Molibdênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA