Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mar Biol ; 81: 167-211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471656

RESUMO

Emerging contaminants (ECs) may pose adverse effects on the marine ecosystem and human health. Based on the analysis of publications filed in recent years, this paper provides a comprehensive overview on three prominent groups of ECs, i.e., brominated flame retardants, microplastics, and biocides. It includes detailed discussions on: (1) the occurrence of ECs in seawater, sediment, and biota; (2) analytical detection and monitoring approaches for these target ECs; and (3) the biological impacts of the ECs on humans and other trophic levels. This review provides a summary of recent advances in the field and remaining knowledge gaps to address, to enable the assessment of risk and support the development of regulations and mitigation technologies for the control of ECs in the marine environment.


Assuntos
Desinfetantes/química , Retardadores de Chama/análise , Plásticos/química , Poluentes Químicos da Água/química , Monitoramento Ambiental , Hidrocarbonetos Bromados/química , Oceanos e Mares
2.
Adv Mar Biol ; 81: 23-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471658

RESUMO

This review discusses the occurrence, impact, analysis and treatment of metformin and guanylurea in coastal aquatic environments of Canada, USA and Europe. Metformin, a biguanide in chemical classification, is widely used as one of the most effective first-line oral drugs for type 2 diabetes. It is difficult to be metabolized by the human body and exists in both urine and faeces samples in these regions. Guanylurea is metformin's biotransformation product. Consequently, significant concentrations of metformin and guanylurea have been reported in wastewater treatment plants (WWTPs) and coastal aquatic environments. The maximum concentrations of metformin and guanylurea in surface water samples were as high as 59,000 and 4502ngL-1, respectively. Metformin can be absorbed in non-target organisms by plants and in Atlantic salmon (Salmo salar). Guanylurea has a confirmed mitotic activity in plant cells. Analysis methods of metformin are currently developed based on high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The removal of metformin from aquatic environments in the target regions is summarized. The review helps to fill a knowledge gap and provides insights for regulatory considerations. The potential options for managing these emerging pollutants are outlined too.


Assuntos
Metformina/química , Ureia/química , Poluentes Químicos da Água/química , Canadá/epidemiologia , Diabetes Mellitus/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Estados Unidos/epidemiologia , Ureia/análogos & derivados
4.
Sci Total Environ ; 795: 148781, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252767

RESUMO

Spilled oil slicks are likely to break into droplets offshore due to wave energy. The fate and transport of such droplets are affected by suspended particles in local marine environment, through forming oil particle aggregates (OPAs). OPA formation is affected by various factors, including the mixing energy and duration. To evaluate these two factors, lab experiments of OPA formation were conducted using kaolinite at two hydrophobicities in baffled flasks, as represented by the contact angle of 28.8° and 37.7° (original and modified kaolinite). Two mixing energies (energy dissipation rates of 0.05 and 0.5 W/kg) and four durations (10 min, 30 min, 3 h, and 24 h) were considered. Penetration to the oil droplets was observed at 3-5 µm and 5-7 µm for the original and modified kaolinite by confocal microscopy, respectively. At lower mixing energy, volume median diameter d50 of oil droplets increased from 45 µm to 60 µm after 24 h mixing by original kaolinite; for modified kaolinite, d50 decreased from 40 µm to 25 µm after 24 h mixing. The trapped oil amount in negatively buoyant OPAs decreased from 35% (3 h mixing) to 17% (24 h mixing) by original kaolinite; and from 18% to 12% after 24 h mixing by modified kaolinite. Results indicated that the negatively buoyant OPAs formed with original kaolinite at low mixing energy reaggregated after 24 h. At higher mixing energy, d50 decreased from 45 µm to 17 µm after 24 h mixing for both kaolinites. And the trapped oil amount in negatively buoyant OPAs increased to 72% and 49% after 24 h mixing for original and modified kaolinite, respectively. At higher mixing energy, the OPAs formed within 10 min and reached equilibrium at 3 h by original kaolinite. For modified kaolinite, the OPAs continued to form through 24 h.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Interações Hidrofóbicas e Hidrofílicas , Óleos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA