Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7902): 693-699, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062016

RESUMO

The Omicron (B.1.1.529) variant of SARS-CoV-2 emerged in November 2021 and is rapidly spreading among the human population1. Although recent reports reveal that the Omicron variant robustly escapes vaccine-associated and therapeutic neutralization antibodies2-10, the pathogenicity of the virus remains unknown. Here we show that the replication of Omicron is substantially attenuated in human Calu3 and Caco2 cells. Further mechanistic investigations reveal that Omicron is inefficient in its use of transmembrane serine protease 2 (TMPRSS2) compared with wild-type SARS-CoV-2 (HKU-001a) and previous variants, which may explain its reduced replication in Calu3 and Caco2 cells. The replication of Omicron is markedly attenuated in both the upper and lower respiratory tracts of infected K18-hACE2 mice compared with that of the wild-type strain and Delta (B.1.617.2) variant, resulting in its substantially ameliorated lung pathology. Compared with wild-type SARS-CoV-2 and the Alpha (B.1.1.7), Beta (1.351) and Delta variants, infection by Omicron causes the lowest reduction in body weight and the lowest mortality rate. Overall, our study demonstrates that the replication and pathogenicity of the Omicron variant of SARS-CoV-2 in mice is attenuated compared with the wild-type strain and other variants.


Assuntos
COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , Células CACO-2 , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Virulência
2.
J Med Virol ; 96(2): e29472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373201

RESUMO

Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNß treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Replicação Viral , Pulmão , Interferons , Células Epiteliais , Antivirais/farmacologia
3.
J Nanobiotechnology ; 22(1): 15, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166929

RESUMO

Embryonic stem cell (ESC)-derived epitopes can act as therapeutic tumor vaccines against different types of tumors Jin (Adv Healthc Mater 2023). However, these epitopes have poor immunogenicity and stimulate insufficient CD8+ T cell responses, which motivated us to develop a new method to deliver and enhance their effectiveness. Bacterial outer membrane vesicles (OMVs) can serve as immunoadjuvants and act as a delivery vector for tumor antigens. In the current study, we engineered a new OMV platform for the co-delivery of ESC-derived tumor antigens and immune checkpoint inhibitors (PD-L1 antibody). An engineered Staphylococcal Protein A (SpA) was created to non-specifically bind to anti-PD-L1 antibody. SpyCatcher (SpC) and SpA were fused into the cell outer membrane protein OmpA to capture SpyTag-attached peptides and PD-L1 antibody, respectively. The modified OMV was able to efficiently conjugate with ESC-derived TAAs and PD-L1 antibody (SpC-OMVs + SpT-peptides + anti-PD-L1), increasing the residence time of TAAs in the body. The results showed that the combination therapy of ESC-based TAAs and PD-L1 antibody delivered by OMV had significant inhibitory effects in mouse tumor model. Specifically, it was effective in reducing tumor growth by enhancing IFN-γ-CD8+ T cell responses and increasing the number of CD8+ memory cells and antigen-specific T cells. Overall, the new OMV delivery system is a versatile platform that can enhance the immune responses of ESC-based TAA cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Anticorpos , Antígenos de Neoplasias , Proteínas de Membrana , Imunidade , Peptídeos , Epitopos
4.
BMC Infect Dis ; 18(1): 195, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29699491

RESUMO

BACKGROUND: Staphylococcus aureus (S. aureus) causes a wide range of infectious diseases in human and animals. The emergence of antibiotic-resistant strains demands novel strategies for prophylactic vaccine development. In this study, live attenuated S. enterica subsp. enterica serotype Typhimurium (S. Typhimurium) vaccine against S. aureus infection was developed, in which Salmonella Pathogenesis Island-1 Type 3 Secretion System (SPI-1 T3SS) was employed to deliver SaEsxA and SaEsxB, two of ESAT-6-like (Early Secreted Antigenic Target-6) virulence factors of S. aureus. METHODS: Antigens SaEsxA and SaEsxB were fused with the N-terminal secretion and translocation domain of SPI-1 effector SipA. And cytosolic delivery of Staphylococcal antigens into macrophages was examined by western blot. BALB/c mice were orally immunized with S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines. Antigen-specific humoral and Th1/Th17 immune responses were examined by ELISA and ELISPOT assays 7-9 days after the 2nd booster. For ELISPOT assays, the statistical significance was determined by Student's t test. The vaccine efficacy was evaluated by lethal challenge with two S. aureus clinical isolates Newman strain and USA 300 strain. Statistical significance was determined by Log rank (Mantel-Cox) analysis. And a P value of < 0.05 was considered statistically significant. RESULTS: Oral administration of S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines induced antigen-specific humoral and Th1/Th17 immune responses, which increased the survival rate for vaccinated mice when challenged with S. aureus strains. CONCLUSIONS: The newly developed S. Typhimurium-based vaccines delivering SaEsxA and SaEsxB by SPI-1 T3SS could confer protection against S. aureus infection. This study provides evidence that translocation of foreign antigens via Salmonella SPI-1 T3SS into the cytosol of antigen presenting cells (APCs) could induce potent immune responses against pathogens.


Assuntos
Células RAW 264.7/efeitos dos fármacos , Salmonella typhimurium/imunologia , Infecções Estafilocócicas/prevenção & controle , Sistemas de Secreção Tipo III/imunologia , Vacinas Atenuadas/administração & dosagem , Animais , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Virulência/imunologia
5.
J Infect Dis ; 216(2): 245-253, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28633319

RESUMO

Staphylococcusaureus is a severe pathogen found in the community and in hospitals. Most notably, methicillin-resistant S. aureus (MRSA) is resistant to almost all antibiotics, which is a growing public health concern. The emergence of drug-resistant strains has prompted the search for alternative treatments such as immunotherapeutic approaches. Previous research showed that S. aureus exploit the immunomodulatory attributes of adenosine to escape host immunity. In this study, we investigated adenosine synthase A (AdsA), an S. aureus cell wall-anchored enzyme as possible targets for immunotherapy. Mice vaccinated with aluminum hydroxide-formulated recombinant AdsA (rAdsA) induced high-titer anti-AdsA antibodies, thereby providing consistent protection in 3 mouse infection models when challenged with 2 S. aureus strains. The importance of anti-AdsA antibody in protection was demonstrated by passive transfer experiments. Moreover, AdsA-specific antisera promote killing S. aureus by immune cells. Altogether, our data demonstrate that the AdsA is a promising target for vaccines and therapeutics development to alleviate severe S. aureus diseases.


Assuntos
Anticorpos Antibacterianos/farmacologia , Proteínas de Bactérias/imunologia , Imunização Passiva , Ligases/imunologia , Infecções Cutâneas Estafilocócicas/terapia , Adenosina/biossíntese , Animais , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Feminino , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Staphylococcus aureus/enzimologia
6.
BMC Infect Dis ; 16(1): 596, 2016 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-27770789

RESUMO

BACKGROUND: Clostridium difficile-associated disease (CDAD) constitutes a great majority of hospital diarrhea cases in industrialized countries and is induced by two types of large toxin molecules: toxin A (TcdA) and toxin B (TcdB). Development of immunotherapeutic approaches, either active or passive, has seen a resurgence in recent years. Studies have described vaccine plasmids that express either TcdA and/or TcdB receptor binding domain (RBD). However, the effectiveness of one vector encoding both toxin RBDs against CDAD has not been evaluated. METHODS: In the study, we constructed highly optimized plasmids to express the receptor binding domains of both TcdA and TcdB from a single vector. The DNA vaccine was evaluated in two animal models for its immunogenicity and protective effects. RESULTS: The DNA vaccine induced high levels of serum antibodies to toxin A and/or B and demonstrated neutralizing activity in both in vitro and in vivo systems. In a C. difficile hamster infection model, immunization with the DNA vaccine reduced infection severity and conferred significant protection against a lethal C. difficile strain. CONCLUSIONS: This study has demonstrated a single plasmid encoding the RBD domains of C. difficile TcdA and TcdB as a DNA vaccine that could provide protection from C. difficile disease.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Clostridioides difficile/patogenicidade , Enterotoxinas/genética , Vacinas de DNA/imunologia , Animais , Vacinas Bacterianas/genética , Células COS , Clostridioides difficile/genética , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/prevenção & controle , Feminino , Mesocricetus , Camundongos Endogâmicos BALB C , Plasmídeos , Vacinas de DNA/genética
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(12): 1259-1263, 2016 Dec.
Artigo em Zh | MEDLINE | ID: mdl-27974118

RESUMO

OBJECTIVE: To investigate the risk factors for recurrent wheezing in infants and young children suffering from dust mite allergy after their first wheezing. METHODS: A total of 1 236 infants and young children who experienced a first wheezing episode and were hospitalized between August 2014 and February 2015 were enrolled, among whom 387 were allergic to dust mites. These infants and young children were followed up to 1 year after discharge. A total of 67 infants and young children who experienced 3 or more recurrent wheezing episodes within 1 year were enrolled as the recurrent wheezing group, while 84 infants and young children who did not experience recurrent wheezing during follow-up were enrolled as the control group. Univariate analysis and multivariate logistic stepwise regression analysis were performed to investigate the risk factors for recurrent wheezing in these patients. RESULTS: The univariate analysis showed that the age on admission, wheezing time before admission, Mycoplasma pneumoniae infection rate, and influenza virus infection rate were associated with recurrent wheezing. The multivariate logistic stepwise regression analysis showed that the older age on admission (OR=2.21, P=0.04) and Mycoplasma pneumoniae infection (OR=3.54, P=0.001) were independent risk factors for recurrent wheezing. CONCLUSIONS: Infants and young children who are allergic to dust mites, especially young children, have a significantly increased risk of recurrent wheezing if they are complicated by Mycoplasma pneumoniae infection during the first wheezing episode.


Assuntos
Hipersensibilidade/complicações , Pyroglyphidae/imunologia , Sons Respiratórios/etiologia , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Modelos Logísticos , Masculino , Recidiva , Fatores de Risco
8.
Infect Immun ; 83(1): 339-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368117

RESUMO

Staphylococcus aureus is a common pathogen found in the community and in hospitals. Most notably, methicillin-resistant S. aureus is resistant to many antibiotics, which is a growing public health concern. The emergence of drug-resistant strains has prompted the search for alternative treatments, such as immunotherapeutic approaches. To date, most clinical trials of vaccines or of passive immunization against S. aureus have ended in failure. In this study, we investigated two ESAT-6-like proteins secreted by S. aureus, S. aureus EsxA (SaEsxA) and SaEsxB, as possible targets for a vaccine. Mice vaccinated with these purified proteins elicited high titers of anti-SaEsxA and anti-SaEsxB antibodies, but these antibodies could not prevent S. aureus infection. On the other hand, recombinant SaEsxA (rSaEsxA) and rSaEsxB could induce Th1- and Th17-biased immune responses in mice. Mice immunized with rSaEsxA and rSaEsxB had significantly improved survival rates when challenged with S. aureus compared with the controls. These findings indicate that SaEsxA and SaEsxB are two promising Th1 and Th17 candidate antigens which could be developed into multivalent and serotype-independent vaccines against S. aureus infection.


Assuntos
Bacteriemia/imunologia , Bacteriemia/prevenção & controle , Proteínas de Bactérias/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Feminino , Camundongos Endogâmicos BALB C , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética , Análise de Sobrevida , Células Th1/imunologia , Células Th17/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
9.
Vaccines (Basel) ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38400110

RESUMO

Vaccination-route-dependent adjuvanticity was identified as being associated with the specific features of antigen-carrying nanoparticles (NPs) in the present work. Here, we demonstrated that the mechanical properties and the decomposability of NP adjuvants play key roles in determining the antigen accessibility and thus the overall vaccine efficacy in the immune system when different vaccination routes were employed. We showed that soft nano-vaccines were associated with more efficient antigen uptake when administering subcutaneous (S.C.) vaccination, while the slow decomposition of hard nano-vaccines promoted antigen uptake when intravenous (I.V.) vaccination was employed. In comparison to the clinically used aluminum (Alum) adjuvant, the NP adjuvants were found to stimulate both humoral and cellular immune responses efficiently, irrespective of the vaccination route. For vaccination via S.C. and I.V. alike, the NP-based vaccines show excellent protection for mice from Staphylococcus aureus (S. aureus) infection, and their survival rates are 100% after lethal challenge, being much superior to the clinically used Alum adjuvant.

10.
EBioMedicine ; 99: 104916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101297

RESUMO

BACKGROUND: Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS: We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS: We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION: Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING: The full list of funding can be found at the Acknowledgements section.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Animais , Camundongos , Virulência , Células Epiteliais , Mucosa Nasal
11.
Adv Healthc Mater ; 12(9): e2202691, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36510117

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) share many cellular and molecular features with cancer cells. Taking advantage of these similarities, stem cells are effective vaccines against cancers in animal models. However, the molecular basis is not well understood, which hinders the development of effective cancer vaccines. Here, prophylactic and therapeutic bladder cancer vaccines composed of allogeneic ESCs and CpG with or without granulocyte macrophage colony stimulating factor are tested. The ESC-based cancer vaccines are able to induce specific antitumor immunity including stimulating cytotoxic CD8+ T cells and memory CD4+ T cells, reducing myeloid-derived suppressor cells, and preventing bladder cancer growth in mouse models. Furthermore, several genes that are overexpressed in both ESCs and tumors are identified. An epitope-based vaccine designed with shared overexpressed proteins induces specific antitumor immunity and reduces bladder cancer growth. Functional epitopes underlying the action of stem cell-based vaccines against bladder cancer are identified and it is confirmed that ESC-based anticancer vaccines have great potential. A systematic approach is provided here to developing novel effective epitope-based cancer vaccines in the future.


Assuntos
Vacinas Anticâncer , Neoplasias da Bexiga Urinária , Camundongos , Animais , Linfócitos T CD8-Positivos , Epitopos , Neoplasias da Bexiga Urinária/terapia , Células-Tronco Embrionárias
12.
Radiat Oncol ; 18(1): 12, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658595

RESUMO

OBJECTIVE: The purpose of this study is to verify the correlation between medium and low radiation doses of the pelvic-bone marrow and the incidence of lymphocytic toxicity during concurrent chemoradiotherapy for cervical cancer. MATERIALS AND METHODS: This research included 117 cervical cancer patients, who received concurrent chemoradiotherapy. Radiotherapy included external-beam radiation therapy and brachytherapy. The dosimetry parameters include the Volume receiving 5 Gy (V5), 10 Gy (V10), 20 Gy (V20), 30 Gy (V30), 40 Gy (V40), 50 Gy (V50), and the mean dose (D mean) of the bone marrow. Lymphocytic toxicity was calculated from lowest lymphocytic count after two cycles of concurrent chemotherapy. RESULTS: During concurrent chemoradiotherapy, the incidence of lymphocytic toxicity is 94.88%. The incidence of grade 3-4 toxicity is 68.38%. Multivariate analysis findings show that the dosimetry parameters V5, V10, V20, and V30 are significantly correlated with lymphocytic toxicity. The patients are divided into small-volume subgroups and large-volume subgroups based on the cutoff values. The relative risk of both grade 1-4 and grade 3-4 lymphocytic toxicity is significantly lower in the small-volume subgroups than in the large-volume subgroups (P < 0.05). Kaplan-Meier analysis shows that the incidence of both grade 1-4 and grade 3-4 lymphocytic toxicity of the small-volume subgroups is significantly lower than that of the large-volume subgroups (P < 0.05). CONCLUSION: There is a significant correlation between a medium and low dose of pelvic-bone-marrow radiation and incidence of lymphocytic toxicity. Reducing the volume of medium and low radiation doses could effectively reduce incidence of lymphocytic toxicity.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Medula Óssea , Radioterapia de Intensidade Modulada/efeitos adversos , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/radioterapia , Quimiorradioterapia/efeitos adversos , Doses de Radiação
13.
IEEE/ACM Trans Comput Biol Bioinform ; 20(6): 3669-3680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665713

RESUMO

The rational design of vaccines and antibody-based therapeutics against newly emerging viruses relies on B cell epitopes mainly. To predict the B cell epitopes of a novel virus, several algorithms have been developed. While most existing algorithms are trained on a dataset in which B cell epitopes are classified as 'Positive' or 'Negative'. However, we found that training on such data contaminates the target pattern of specific viruses, leading to inaccurate predictions in some cases. In this paper, we introduce a novel framework for predicting linear B cell epitopes of novel viruses by exclusively using highly similar viruses for training data. We employed kernel regression based on seropositive rates, which are the percentages of seropositive samples among the population, to predict the potential epitopes. To assess our method, we conducted simulations and utilized two real-world datasets. Our method significantly outperformed other existing methods on the testing data of four viruses with seropositive rates. Also, our strategy showed a better prediction in a larger dataset from the IEDB. Thus, a novel framework providing better linear B cell prediction of newly emerging viruses is established, which will benefit the rational design of vaccines and antibody-based therapeutics in the future.


Assuntos
Vacinas , Vírus , Epitopos de Linfócito B , Algoritmos
14.
Nat Commun ; 14(1): 3440, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301910

RESUMO

The overall success of worldwide mass vaccination in limiting the negative effect of the COVID-19 pandemics is inevitable, however, recent SARS-CoV-2 variants of concern, especially Omicron and its sub-lineages, efficiently evade humoral immunity mounted upon vaccination or previous infection. Thus, it is an important question whether these variants, or vaccines against them, induce anti-viral cellular immunity. Here we show that the mRNA vaccine BNT162b2 induces robust protective immunity in K18-hACE2 transgenic B-cell deficient (µMT) mice. We further demonstrate that the protection is attributed to cellular immunity depending on robust IFN-γ production. Viral challenge with SARS-CoV-2 Omicron BA.1 and BA.5.2 sub-variants induce boosted cellular responses in vaccinated µMT mice, which highlights the significance of cellular immunity against the ever-emerging SARS-CoV-2 variants evading antibody-mediated immunity. Our work, by providing evidence that BNT162b2 can induce significant protective immunity in mice that are unable to produce antibodies, thus highlights the importance of cellular immunity in the protection against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Animais , Humanos , Camundongos , Anticorpos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Interferon gama , SARS-CoV-2 , Vacinas contra COVID-19/imunologia
15.
Sci Adv ; 9(3): eadd3867, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662861

RESUMO

Successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires proteolytic cleavage of the viral spike protein. While the role of the host transmembrane protease serine 2 in SARS-CoV-2 infection is widely recognized, the involvement of other proteases capable of facilitating SARS-CoV-2 entry remains incompletely explored. Here, we show that multiple members from the membrane-type matrix metalloproteinase (MT-MMP) and a disintegrin and metalloproteinase families can mediate SARS-CoV-2 entry. Inhibition of MT-MMPs significantly reduces SARS-CoV-2 replication in vitro and in vivo. Mechanistically, we show that MT-MMPs can cleave SARS-CoV-2 spike and angiotensin-converting enzyme 2 and facilitate spike-mediated fusion. We further demonstrate that Omicron BA.1 has an increased efficiency on MT-MMP usage, while an altered efficiency on transmembrane serine protease usage for virus entry compared with that of ancestral SARS-CoV-2. These results reveal additional protease determinants for SARS-CoV-2 infection and enhance our understanding on the biology of coronavirus entry.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Metaloproteases/metabolismo , Internalização do Vírus
16.
Cell Host Microbe ; 31(8): 1301-1316.e8, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527659

RESUMO

Current COVID-19 vaccines are highly effective against symptomatic disease, but repeated booster doses using vaccines based on the ancestral strain offer limited additional protection against SARS-CoV-2 variants of concern (VOCs). To address this, we used antigenic distance to in silico select optimized booster vaccine seed strains effective against both current and future VOCs. Our model suggests that a SARS-CoV-1-based booster vaccine has the potential to cover a broader range of VOCs. Candidate vaccines including the spike protein from ancestral SARS-CoV-2, Delta, Omicron (BA.1), SARS-CoV-1, or MERS-CoV were experimentally evaluated in mice following two doses of the BNT162b2 vaccine. The SARS-CoV-1-based booster vaccine outperformed other candidates in terms of neutralizing antibody breadth and duration, as well as protective activity against Omicron (BA.2) challenge. This study suggests a unique strategy for selecting booster vaccines based on antigenic distance, which may be useful in designing future booster vaccines as new SARS-CoV-2 variants emerge.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Vacina BNT162 , Anticorpos Neutralizantes , Anticorpos Antivirais
17.
EBioMedicine ; 95: 104753, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37579626

RESUMO

BACKGROUND: Among the Omicron sublineages that have emerged, BA.1, BA.2, BA.5, and their related sublineages have resulted in the largest number of infections. While recent studies demonstrated that all Omicron sublineages robustly escape neutralizing antibody response, it remains unclear on whether these Omicron sublineages share any pattern of evolutionary trajectory on their replication efficiency and intrinsic pathogenicity along the respiratory tract. METHODS: We compared the virological features, replication capacity of dominant Omicron sublineages BA.1, BA.2 and BA.5 in the human nasal epithelium, and characterized their pathogenicity in K18-hACE2, A129, young C57BL/6, and aged C57BL/6 mice. FINDINGS: We found that BA.5 replicated most robustly, followed by BA.2 and BA.1, in the differentiated human nasal epithelium. Consistently, BA.5 infection resulted in higher viral gene copies, infectious viral titres and more abundant viral antigen expression in the nasal turbinates of the infected K18-hACE2 transgenic mice. In contrast, the Omicron sublineages are continuously attenuated in lungs of infected K18-hACE2 and C57BL/6 mice, leading to decreased pathogenicity. Nevertheless, lung manifestations remain severe in Omicron sublineages-infected A129 and aged C57BL/6 mice. INTERPRETATION: Our results suggested that the Omicron sublineages might be gaining intrinsic replication fitness in the upper respiratory tract, therefore highlighting the importance of global surveillance of the emergence of hyper-transmissive Omicron sublineages. On the contrary, replication and intrinsic pathogenicity of Omicron is suggested to be further attenuated in the lower respiratory tract. Effective vaccination and other precautions should be in place to prevent severe infections in the immunocompromised populations at risk. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
COVID-19 , Camundongos , Animais , Humanos , Idoso , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Virulência , Anticorpos Neutralizantes , Camundongos Transgênicos , Anticorpos Antivirais
18.
Environ Sci Technol ; 46(13): 7207-14, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22681520

RESUMO

Gaseous and size-segregated particulate PBDEs (specifically BDE-47, -99, -183, -207, and -209) in the air were measured in urban Guangzhou at 100 and 150 m above the ground in daytime and at night in August and December 2010, to assess dry deposition of these contaminants accurately with regards to influences of meteorological factors but without confounding surface effects. Particulate PBDEs were more abundant at night than in daytime, and slightly higher in winter than in summer, likely from varying meteorological conditions and atmospheric boundary layers. More than 60% of particulate-phase PBDEs was contained in particles with an aerodynamic diameter (D(p)) below 1.8 µm, indicating long-range transport potential. The average daily particle dry deposition fluxes of PBDEs in August ranged from 2.6 (BDE-47) to 88.6 (BDE-209) ng m(-2) d(-1), while those in winter ranged from 2.0 (BDE-47) to 122 (BDE-209) ng m(-2) d(-1). Deposition fluxes of all PBDE congeners were significantly higher in daytime than at night for both months, due to the effect of diurnal variability of meteorological factors. In addition, mean overall particle deposition velocities of individual BDE congeners ranged from 0.11 to 0.28 cm s(-1). These values were within a factor of 2 of assumed values previously used in southern China and the Laurentian Great Lakes, suggesting that such assumptions were reasonable for sites with similar particulate size distributions and PBDE sources. Dry deposition velocities of PBDEs were lower at night than those in the daytime, probably reflecting higher mechanical and thermal turbulence during daytime. Dry deposition of particulate-bound PBDEs is influenced by short-term temporal variability from meteorological factors, and also by particulate size fractions.


Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Éteres Difenil Halogenados/análise , Material Particulado/análise , China , Monitoramento Ambiental , Conceitos Meteorológicos , Tamanho da Partícula , Estações do Ano
19.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215983

RESUMO

Omicron was designated by the WHO as a VOC on 26 November 2021, only 4 days after its sequence was first submitted. However, the impact of Omicron on current antibodies and vaccines remains unknown and evaluations are still a few weeks away. We analysed the mutations in the Omicron variant against epitopes. In our database, 132 epitopes of the 120 antibodies are classified into five groups, namely NTD, RBD-1, RBD-2, RBD-3, and RBD-4. The Omicron mutations impact all epitopes in NTD, RBD-1, RBD-2, and RBD-3, with no antibody epitopes spared by these mutations. Only four out of 120 antibodies may confer full resistance to mutations in the Omicron spike, since all antibodies in these three groups contain one or more epitopes that are affected by these mutations. Of all antibodies under EUA, the neutralisation potential of Etesevimab, Bamlanivimab, Casirivimab, Imdevima, Cilgavimab, Tixagevimab, Sotrovimab, and Regdanvimab might be dampened to varying degrees. Our analysis suggests the impact of Omicron on current therapeutic antibodies by the Omicron spike mutations may also apply to current COVID-19 vaccines.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Antivirais/farmacologia , Simulação por Computador , Mutação/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Bases de Dados Factuais , Epitopos/imunologia , Humanos , Imunoglobulina G/farmacologia , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia
20.
ACS Infect Dis ; 8(12): 2586-2593, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36357959

RESUMO

The ongoing coronavirus disease 2019 pandemic has raised concerns about the risk of re-infection. Non-neutralizing epitopes are one of the major reasons for antibody-dependent enhancement. Past studies on the ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have revealed an infectivity-enhancing site on the ancestral SARS-CoV-2 spike protein. However, infection enhancement associated with the SARS-CoV-2 Omicron strain remains elusive. In this study, we examined the antibodies induced by a multiple epitope-based vaccine, which showed infection enhancement for the Omicron strain but not for the ancestral SARS-CoV-2 or Delta strain. By examining the antibodies induced by single epitope-based vaccines, we identified a conserved epitope, IDf (450-469), with neutralizing activity against ancestral SARS-CoV-2, Delta, and Omicron. Although neutralizing epitopes are present in the multiple epitope-based vaccine, other immunodominant non-neutralizing epitopes such as IDg (480-499) can shade their neutralizing activity, leading to infection enhancement of Omicron. Our study provides up-to-date epitope information on SARS-CoV-2 variants to help design better vaccines or antibody-based therapeutics against future variants.


Assuntos
COVID-19 , Vacinas , Humanos , Epitopos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos , Epitopos Imunodominantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA