RESUMO
The electronic, optical, and magnetic properties of Nd-doped ZnO systems were calculated using the DFT/GGA + U method. According to the results, the Nd dopant causes lattice parameter expansion, negative formation energy, and bandgap narrowing, resulting in the formation of an N-type degenerate semiconductor. Overlapping of the generated impurity and Fermi levels results in a significant trap effect that prevents electron-hole recombination. The absorption spectrum demonstrates a redshift in the visible region, and the intensity increased, leading to enhanced photocatalytic performance. The Nd-doped ZnO system displays ferromagnetic, with FM coupling due to strong spd-f hybridization through magnetic exchange interaction between the Nd-4f state and O-2p, Zn-4s, and Zn-3p states. These findings imply that Nd-doped ZnO may be a promising material for DMS spintronic devices.
RESUMO
We utilized a first-principle density functional theory for a comprehensive analysis of CsPbX3 (X = F, Cl, Br, I) to explore its physical and chemical properties, including its mechanical behavior, electronic structure and optical properties. Calculations show that all four materials have good stability, modulus of elasticity, hardness and wear resistance. Additionally, CsPbX3 demonstrates a vertical electron leap and serves as a semiconductor material with direct band gaps of 3.600 eV, 3.111 eV, 2.538 eV and 2.085 eV. In examining its optical properties, we observed that the real and imaginary components of the dielectric function exhibit peaks within the low-energy range. Furthermore, the dielectric function gradually decreases as the photon energy increases. The absorption spectrum reveals that the CsPbX3 material exhibits the highest UV light absorption, and as X changes (with the increase in atomic radius within the halogen group of elements), the light absorption undergoes a red shift, becoming stronger and enhancing light utilization. These properties underscore the material's potential for application in microelectronic and optoelectronic device production. Moreover, they provide a theoretical reference for future investigations into CsPbX3 materials.
RESUMO
High levels of antibiotic accumulation and the difficulty of degradation can have serious consequences for the environment and, therefore, require urgent attention. To solve this problem, a synergistic Er and Cd ion-codoped Bi4O5Br2 photocatalyst was proposed. The degradation rate of sulfamethoxazole (SMX) by Er/Cd-Bi4O5Br2 was eight times higher than that of pure Bi4O5Br2, exceeding that of single Er-doped or Cd-doped Bi4O5Br2, which was attributed to the ability of Er/Cd-Bi4O5Br2 to generate a variety of free radicals. Experimental results and theoretical calculations suggested a possible mechanism for the improved photocatalytic degradation rate. The reduction of the band gap can facilitate the production of electron-hole pairs, which play a significant role in the production of reactive radicals. Furthermore, an optimal stabilized structure of the ErCd-Bi4O5Br2 dopant system was identified based on the formation energy formulas of different ligand configurations. These findings offer promising potential for the degradation of broad-spectrum antibiotics and provide valuable insights for the design and modification of photocatalytic materials.
Assuntos
Antibacterianos , Bismuto , Teoria da Densidade Funcional , Luz , Antibacterianos/química , Bismuto/química , Érbio/química , Microesferas , Sulfametoxazol/química , CatáliseRESUMO
Previous studies have demonstrated the existence of intermediate stem cells, which have been successfully obtained from human naive pluripotent stem cells (PSCs) and peri-implantation embryos. However, it is not known whether human extended pluripotent stem cells (hEPSCs) can be directly induced into intermediate stem cells. Moreover, the ability of extra-embryonic lineage differentiation in intermediate stem cells has not been verified. In this issue, we transformed hEPSCs into a kind of novel intermediate pluripotent stem cell resembling embryonic days 8-9 (E8-E9) epiblasts and proved its feature of formative epiblasts. We engineered hEPSCs from primed hPSCs under N2B27-LCDM (N2B27 plus Lif, CHIR, DiH and MiH) conditions. Then, we added Activin A, FGF and XAV939 to modulate signalling pathways related to early humans' embryogenesis. We performed RNA-seq and CUT&Tag analysis to compare with AF9-hPSCs from different pluripotency stages of hPSCs. Trophectoderm (TE), primordial germ cells-like cells (PGCLC) and endoderm, mesoderm, and neural ectoderm induction were conducted by specific small molecules and proteins. AF9-hPSCs transcription resembled that of E8-E9 peri-implantation epiblasts. Signalling pathway responsiveness and histone methylation further revealed their formative pluripotency. Additionally, AF9-hPSCs responded directly to primordial germ cells (PGCs) specification and three germ layer differentiation signals in vitro. Moreover, AF9-hPSCs could differentiate into the TE lineage. Therefore, AF9-hPSCs represented an E8-E9 formative pluripotency state between naïve and primed pluripotency, opening new avenues for studying human pluripotency development during embryogenesis.
Assuntos
Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Embrião de Mamíferos , Camadas Germinativas/metabolismo , Transdução de SinaisRESUMO
Finding effective strategies to design efficient photocatalysts and decompose refractory organic compounds in wastewater is a challenging problem. Herein, by coupling element doping and constructing heterostructures, S-scheme CdS QDs/La-Bi2WO6 (CS/LBWO) photocatalysts are designed and synthesized by a simple hydrothermal method. As a result, the RhB degradation efficiency of the optimized 5% CS/LBWO reached 99% within 70 min of illumination with excellent stability and recyclability. CS/LBWO shows improvement in the adsorption range of visible light and promotes electron-hole pair generation/migration/separation, attributing the superior degradation performance. The degradation RhB mechanism is proposed by a free radical capture experiment, electron paramagnetic resonance, and high-performance liquid chromatography-mass spectrometry results, indicating that h+ and â¢O2 - play a significant role during four degradation processes: de-ethylation, chromophore cleavage, ring opening, and mineralization. Based on in situ irradiated X-ray photoelectron spectroscopy, Mulliken electronegativity theory, and the work function results, the S-scheme heterojunction of CS/LBWO promotes the transfer of photogenerated electron-hole pairs and promotes the generation of reactive radicals. This work not only reports that 5% CS/LBWO is a promising photocatalyst for degradation experiments but also provides an approach to design advanced photocatalysts by coupling element doping and constructing heterostructures.
RESUMO
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan-Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.