Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(7): e2305658, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798674

RESUMO

Defect engineering is promising to tailor the physical properties of 2D semiconductors for function-oriented electronics and optoelectronics. Compared with the extensively studied 2D binary materials, the origin of defects and their influence on physical properties of 2D ternary semiconductors are not clarified. Here, the effect of defects on the electronic structure and optical properties of few-layer hexagonal Znln2 S4 is thoroughly studied via versatile spectroscopic tools in combination with theoretical calculations. It is demonstrated that the Zn-In antistructural defects induce the formation of a series of donor and acceptor energy levels and sulfur vacancies induce donor energy levels, leading to rich recombination paths for defect emission and extrinsic absorption. Impressively, the emission of donor-acceptor pair in Znln2 S4 can be significantly tailored by electrostatic gating due to efficient tunability of Fermi level (Ef ). Furthermore, the layer-dependent dipole orientation of defect emission in Znln2 S4 is directly revealed by back focal plane imagining, where it presents obviously in-plane dipole orientation within a dozen-layer thickness of Znln2 S4 . These unique features of defects in Znln2 S4 including extrinsic absorption, rich recombination paths, gate tunability, and in-plane dipole orientation are definitely a benefit to the advanced orientation-functional optoelectronic applications.

2.
Opt Express ; 29(17): 26822-26830, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615109

RESUMO

Quantum entanglement, quantum steering and Bell nonlocality, as significant quantum resources in the field of quantum information science, can achieve variously valuable quantum information tasks. Among of them, quantum entanglement and Bell nonlocality are the weakest and strongest nonlocal correlations, respectively. One can capture the quantum steering and Bell nonlocality via violating steering inequality and Bell inequality, respectively. In general, the detections of quantum steering and Bell nonlocality are strictly harder than entanglement detection. Here, based on steering inequality test and quantum state tomography, we attain various nonlocal correlations and experimentally demonstrate that the estimations of quantum steering and Bell nonlocality can be realized according to the quantum entanglement of the prepared two-photon test states. The estimated efficiency of quantum steering is stronger than the one of Bell nonlocality in this scenario, i.e., more steerable two-photon test states can be verified through quantum entanglement. In addition, quantum steering and Bell nonlocality are bounded by the corresponding upper and lower bounds, and these bounds cannot be punctured by all prepared two-photon states in experiment. These results are conducive to understand the relations among these nonlocal correlations.

3.
J Phys Condens Matter ; 33(12)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33326939

RESUMO

Taking into account the interplay between the disorder and Coulomb interaction, the phase diagram of three-dimensional anisotropic Weyl semimetal is studied by renormalization group (RG) theory. Weak disorder is irrelevant in anisotropic Weyl semimetal, while the disorder becomes relevant and drives a quantum phase transition (QPT) from semimetal to compressible diffusive metal (CDM) phases if the disorder strength is larger than a critical value. The long-range Coulomb interaction is irrelevant in clean anisotropic Weyl semimetal. However, interestingly, we find that the long-range Coulomb interaction exerts a dramatic influence on the critical disorder strength for phase transition to CDM. Specifically, the critical disorder strength can receive a prominent change even though an arbitrarily weak Coulomb interaction is included. This novel behavior is closely related to the anisotropic screening effect of Coulomb interaction, and essentially results from the specifical energy dispersion of the fermion excitations in anisotropic Weyl semimetal. The theoretical results are helpful for understanding the physical properties of the candidates of anisotropic Weyl semimetal, such as pressured BiTeI, and some other related materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA