Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 149(5): 1125-39, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632975

RESUMO

AnkyrinG (ankG) is highly enriched in neurons at axon initial segments (AISs) where it clusters Na(+) and K(+) channels and maintains neuronal polarity. How ankG becomes concentrated at the AIS is unknown. Here, we show that as neurons break symmetry, they assemble a distal axonal submembranous cytoskeleton, comprised of ankyrinB (ankB), αII-spectrin, and ßII-spectrin, that defines a boundary limiting ankG to the proximal axon. Experimentally moving this boundary altered the length of ankG staining in the proximal axon, whereas disruption of the boundary through silencing of ankB, αII-spectrin, or ßII-spectrin expression blocked AIS assembly and permitted ankG to redistribute throughout the distal axon. In support of an essential role for the distal cytoskeleton in ankG clustering, we also found that αII and ßII-spectrin-deficient mice had disrupted AIS. Thus, the distal axonal cytoskeleton functions as an intra-axonal boundary restricting ankG to the AIS.


Assuntos
Axônios/metabolismo , Citoesqueleto/metabolismo , Neurônios/metabolismo , Animais , Anquirinas/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Neurônios/citologia , Espectrina/metabolismo
2.
J Physiol ; 602(6): 1127-1145, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441922

RESUMO

Spectrins function together with actin as obligatory subunits of the submembranous cytoskeleton. Spectrins maintain cell shape, resist mechanical forces, and stabilize ion channel and transporter protein complexes through binding to scaffolding proteins. Recently, pathogenic variants of SPTBN4 (ß4 spectrin) were reported to cause both neuropathy and myopathy. Although the role of ß4 spectrin in neurons is mostly understood, its function in skeletal muscle, another excitable tissue subject to large forces, is unknown. Here, using a muscle specific ß4 spectrin conditional knockout mouse, we show that ß4 spectrin does not contribute to muscle function. In addition, we show ß4 spectrin is not present in muscle, indicating the previously reported myopathy associated with pathogenic SPTBN4 variants is neurogenic in origin. More broadly, we show that α2, ß1 and ß2 spectrins are found in skeletal muscle, with α2 and ß1 spectrins being enriched at the postsynaptic neuromuscular junction (NMJ). Surprisingly, using muscle specific conditional knockout mice, we show that loss of α2 and ß2 spectrins had no effect on muscle health, function or the enrichment of ß1 spectrin at the NMJ. Muscle specific deletion of ß1 spectrin also had no effect on muscle health, but, with increasing age, resulted in the loss of clustered NMJ Na+ channels. Together, our results suggest that muscle ß1 spectrin functions independently of an associated α spectrin to maintain Na+ channel clustering at the postsynaptic NMJ. Furthermore, despite repeated exposure to strong forces and in contrast to neurons, muscles do not require spectrin cytoskeletons to maintain cell shape or integrity. KEY POINTS: The myopathy found in pathogenic human SPTBN4 variants (where SPTBN4 is the gene encoding ß4 spectrin) is neurogenic in origin. ß1 spectrin plays essential roles in maintaining the density of neuromuscular junction Nav1.4 Na+ channels. By contrast to the canonical view of spectrin organization and function, we show that ß1 spectrin can function independently of an associated α spectrin. Despite the large mechanical forces experienced by muscle, we show that spectrins are not required for muscle cell integrity. This is in stark contrast to red blood cells and the axons of neurons.


Assuntos
Doenças Musculares , Espectrina , Camundongos , Animais , Humanos , Espectrina/genética , Espectrina/análise , Espectrina/metabolismo , Citoesqueleto de Actina/metabolismo , Junção Neuromuscular/metabolismo , Músculo Esquelético/metabolismo
3.
Nanotechnology ; 32(18): 185704, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33494074

RESUMO

Nanostructured dielectric composite has been considered as a promising manner in improving the flashover performance of oil-paper which has been widely used in power systems. In this paper, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit SiO2 on the ceramic fiber-reinforced insulating paper. Scanning electron microscope images show a large number of SiO2 nanoparticles with diameters of 100 nm-250 nm uniformly attached to the fiber surface after the plasma deposition. The surface flashover voltage of the insulating paper was tested in the air and the transformer oil, respectively. Results show that the corresponding DC surface flashover voltages increased by 15.1% in the air and breakdown between liquid and solid interface increased by 24.6% after the PECVD. It is believed that nanoparticles constructed in ceramic fibers change the electron injection barrier which inhibits the injection of negative charges and hinders the accumulation of charges in the dielectric. Nanoparticles can capture electric charges formed in the transformer oil which affects the generation and development of streamers, resulting in an increased dielectric strength. This study provides a new method to comprehensively improve the surface insulating property which has the prospect of promoting other dielectric materials.

4.
Nanotechnology ; 32(12): 125703, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33382042

RESUMO

Polystyrene (PS) is a common insulating material in pulsed power devices, which has excellent and reliable insulation properties. However, the charge accumulation on the insulator surface seriously threatens its surface insulation property. Surface modification has been verified as an effective way for inhibiting surface charge accumulation. In this paper, plasma polymerized fluorocarbon (PPFC) coating was prepared by low-temperature plasma polymerization in the mixture of methyl-methacrylate and dodecafluoroheptyl-methacrylate (DFHMA). Compared with the untreated PS, the surface charge dissipation rate of PPFC coating is increased by more than 6 times. The introduction of DFHMA makes the coating have no obvious ageing effect after the storage, and has good reusability after the surface flashover. This work provides a new method for modification of polymer dielectrics and a novel way for the preparation of high-charge-dissipation polymers in other related fields.

5.
Genomics ; 111(6): 1395-1403, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268779

RESUMO

Bashang long-tail chickens are an indigenous breed with dual purpose in China (meat and eggs) but have low egg laying performance. To improve the low egg laying performance, a genome-wide analysis of mRNAs and long noncoding RNAs (lncRNAs) from Bashang long-tail chickens and Hy-Line brown layers was performed. A total of 16,354 mRNAs and 8691 lncRNAs were obtained from ovarian follicles. Between the breeds, 160 mRNAs and 550 lncRNAs were found to be significantly differentially expressed. Integrated network analysis suggested some differentially expressed genes were involved in ovarian follicular development through oocyte meiosis, progesterone-mediated oocyte maturation, and cell cycle. The impact of lncRNAs on cis and trans target genes, indicating some lncRNAs may play important roles in ovarian follicular development. The current results provided a catalog of chicken ovarian follicular lncRNAs and genes for further study to understand their roles in regulation of egg laying performance.


Assuntos
Galinhas/genética , Redes Reguladoras de Genes , Genoma , Folículo Ovariano/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Galinhas/classificação , China , Feminino , Perfilação da Expressão Gênica , Folículo Ovariano/citologia
6.
J Neurosci ; 38(27): 6063-6075, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29853631

RESUMO

Action potential conduction along myelinated axons depends on high densities of voltage-gated Na+ channels at the nodes of Ranvier. Flanking each node, paranodal junctions (paranodes) are formed between axons and Schwann cells in the peripheral nervous system (PNS) or oligodendrocytes in the CNS. Paranodal junctions contribute to both node assembly and maintenance. Despite their importance, the molecular mechanisms responsible for paranode assembly and maintenance remain poorly understood. ßII spectrin is expressed in diverse cells and is an essential part of the submembranous cytoskeleton. Here, we show that Schwann cell ßII spectrin is highly enriched at paranodes. To elucidate the roles of glial ßII spectrin, we generated mutant mice lacking ßII spectrin in myelinating glial cells by crossing mice with a floxed allele of Sptbn1 with Cnp-Cre mice, and analyzed both male and female mice. Juvenile (4 weeks) and middle-aged (60 weeks) mutant mice showed reduced grip strength and sciatic nerve conduction slowing, whereas no phenotype was observed between 8 and 24 weeks of age. Consistent with these findings, immunofluorescence microscopy revealed disorganized paranodes in the PNS and CNS of both postnatal day 13 and middle-aged mutant mice, but not in young adult mutant mice. Electron microscopy confirmed partial loss of transverse bands at the paranodal axoglial junction in the middle-aged mutant mice in both the PNS and CNS. These findings demonstrate that a spectrin-based cytoskeleton in myelinating glia contributes to formation and maintenance of paranodal junctions.SIGNIFICANCE STATEMENT Myelinating glia form paranodal axoglial junctions that flank both sides of the nodes of Ranvier. These junctions contribute to node formation and maintenance and are essential for proper nervous system function. We found that a submembranous spectrin cytoskeleton is highly enriched at paranodes in Schwann cells. Ablation of ßII spectrin in myelinating glial cells disrupted the paranodal cell adhesion complex in both peripheral and CNSs, resulting in muscle weakness and sciatic nerve conduction slowing in juvenile and middle-aged mice. Our data show that a spectrin-based submembranous cytoskeleton in myelinating glia plays important roles in paranode formation and maintenance.


Assuntos
Axônios/metabolismo , Citoesqueleto/metabolismo , Neuroglia/metabolismo , Espectrina/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Nós Neurofibrosos
7.
BMC Biol ; 16(1): 69, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29925370

RESUMO

BACKGROUND: The International Mouse Phenotyping Consortium is generating null allele mice for every protein-coding gene in the genome and characterizing these mice to identify gene-phenotype associations. While CRISPR/Cas9-mediated null allele production in mice is highly efficient, generation of conditional alleles has proven to be more difficult. To test the feasibility of using CRISPR/Cas9 gene editing to generate conditional knockout mice for this large-scale resource, we employed Cas9-initiated homology-driven repair (HDR) with short and long single stranded oligodeoxynucleotides (ssODNs and lssDNAs). RESULTS: Using pairs of single guide RNAs and short ssODNs to introduce loxP sites around a critical exon or exons, we obtained putative conditional allele founder mice, harboring both loxP sites, for 23 out of 30 targeted genes. LoxP sites integrated in cis in at least one mouse for 18 of 23 genes. However, loxP sites were mutagenized in 4 of the 18 in cis lines. HDR efficiency correlated with Cas9 cutting efficiency but was minimally influenced by ssODN homology arm symmetry. By contrast, using pairs of guides and single lssDNAs to introduce loxP-flanked exons, conditional allele founders were generated for all four genes targeted, although one founder was found to harbor undesired mutations within the lssDNA sequence interval. Importantly, when employing either ssODNs or lssDNAs, random integration events were detected. CONCLUSIONS: Our studies demonstrate that Cas9-mediated HDR with pairs of ssODNs can generate conditional null alleles at many loci, but reveal inefficiencies when applied at scale. In contrast, lssDNAs are amenable to high-throughput production of conditional alleles when they can be employed. Regardless of the single-stranded donor utilized, it is essential to screen for sequence errors at sites of HDR and random insertion of donor sequences into the genome.


Assuntos
Sistemas CRISPR-Cas/genética , DNA de Cadeia Simples/genética , Edição de Genes , Mutação com Perda de Função , Camundongos Knockout/genética , RNA Guia de Cinetoplastídeos/genética , Alelos , Animais , Éxons , Camundongos
8.
J Neurosci ; 37(47): 11323-11334, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038243

RESUMO

Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with ßIV and ßII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K+ channels. We show that the density of nodal ßIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier.SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in maintenance of axon integrity. We demonstrate the role of the periodic spectrin-dependent cytoskeleton in axons and show that loss of αII spectrin from PNS axons causes preferential degeneration of large-diameter myelinated axons. We show that nodal αII spectrin is found at greater densities in large-diameter myelinated axons, suggesting that nodes are particularly vulnerable domains requiring a specialized cytoskeleton to protect against axon degeneration.


Assuntos
Axônios/metabolismo , Citoesqueleto/metabolismo , Doenças Desmielinizantes/metabolismo , Nós Neurofibrosos/metabolismo , Espectrina/metabolismo , Animais , Axônios/patologia , Axônios/fisiologia , Doenças Desmielinizantes/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nós Neurofibrosos/patologia , Nós Neurofibrosos/fisiologia , Espectrina/genética
9.
J Neurosci ; 37(47): 11311-11322, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038240

RESUMO

Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse ß subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and ßIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all ß spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system.SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with ßIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology.


Assuntos
Axônios/metabolismo , Citoesqueleto/metabolismo , Nós Neurofibrosos/metabolismo , Espectrina/metabolismo , Potenciais de Ação , Animais , Axônios/fisiologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Deleção de Genes , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Nós Neurofibrosos/fisiologia , Espectrina/genética
10.
Circulation ; 131(8): 695-708, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25632041

RESUMO

BACKGROUND: The cardiac cytoskeleton plays key roles in maintaining myocyte structural integrity in health and disease. In fact, human mutations in cardiac cytoskeletal elements are tightly linked to cardiac pathologies, including myopathies, aortopathies, and dystrophies. Conversely, the link between cytoskeletal protein dysfunction and cardiac electric activity is not well understood and often overlooked in the cardiac arrhythmia field. METHODS AND RESULTS: Here, we uncover a new mechanism for the regulation of cardiac membrane excitability. We report that ßII spectrin, an actin-associated molecule, is essential for the posttranslational targeting and localization of critical membrane proteins in heart. ßII spectrin recruits ankyrin-B to the cardiac dyad, and a novel human mutation in the ankyrin-B gene disrupts the ankyrin-B/ßII spectrin interaction, leading to severe human arrhythmia phenotypes. Mice lacking cardiac ßII spectrin display lethal arrhythmias, aberrant electric and calcium handling phenotypes, and abnormal expression/localization of cardiac membrane proteins. Mechanistically, ßII spectrin regulates the localization of cytoskeletal and plasma membrane/sarcoplasmic reticulum protein complexes, including the Na/Ca exchanger, ryanodine receptor 2, ankyrin-B, actin, and αII spectrin. Finally, we observe accelerated heart failure phenotypes in ßII spectrin-deficient mice. CONCLUSIONS: Our findings identify ßII spectrin as critical for normal myocyte electric activity, link this molecule to human disease, and provide new insight into the mechanisms underlying cardiac myocyte biology.


Assuntos
Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Citoesqueleto/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Espectrina/fisiologia , Sequência de Aminoácidos , Animais , Anquirinas/genética , Anquirinas/fisiologia , Arritmias Cardíacas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Microtúbulos/fisiologia , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Espectrina/análise , Espectrina/química
11.
ACS Appl Mater Interfaces ; 15(12): 16009-16016, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926814

RESUMO

The thermal conductivity of polymer materials is a fundamental parameter in the field of high-voltage electrical insulation. When the operating frequency and power for electrical equipment or electronic devices increase significantly, the internal heat will increase dramatically, and the accumulation of heat will further lead to insulation failure and serious damage of the whole system. The addition of filler with high thermal conductivity into polymer is a common solution. However, the interfacial thermal resistance between filler and bulk materials is the major obstacle to improve thermal conductivity. Herein, in order to reduce the interfacial thermal resistance, nanofillers are modified by plasma technology. The surface modification of nano-Al2O3 is carried out using plasma bubbles with three atmospheres (Ar, Ar+O2, air) as well as coupling agent. The situation of surface grafting before and after the modification is characterized using FTIR, XPS, and SEM. The effect of the mechanism of modification on the thermal conductivity and reaction pathway is investigated. The results showed that the thermal conductivity after plasma modification is increased significantly. Especially, the thermal conductivity is increased by 35% for the sample modified by Ar+O2 atmosphere. This results because more hydroxyl is introduced on the filler surface by the plasma bubbles, which enhance the interface compatibility between filler and epoxy. In addition, surface insulation performance for the modified samples also is enhanced by 14%. This is associated with the change of surface resistance and trap distribution. These results provide potential support for the development of fabrication for high performance epoxy composites.

12.
PNAS Nexus ; 2(6): pgad202, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388922

RESUMO

All female vertebrates develop a pair of ovaries except for birds, in which only the left gonad develops into an ovary, whereas the right gonad regresses. Previous studies found that the transcription factor Paired-Like Homeodomain 2 (PITX2), a key mediator for left/right morphogenesis in vertebrates, was also implicated in asymmetric gonadal development in chickens. In this study, we systematically screened and validated the signaling pathways that could be targeted by Pitx2 to control unilateral gonad development. Integrated chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analyses indicated that Pitx2 directly binds to the promoters of genes encoding neurotransmitter receptors and leads to left-biased expression of both serotonin and dopamine receptors. Forcibly activating serotonin receptor 5-Hydroxytryptamine Receptor 1B (HTR1B) signaling could induce ovarian gene expression and cell proliferation to partially rescue the degeneration of the right gonad. In contrast, inhibiting serotonin signaling could block the development of the left gonad. These findings reveal a PITX2-HTR1B genetic pathway that guides the left-specific ovarian growth in chickens. We also provided new evidence showing neurotransmitters stimulate the growth of nonneuronal cells during the early development of reproductive organs well before innervation.

13.
Commun Biol ; 6(1): 11, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604600

RESUMO

Fast synaptic inhibition is dependent on targeting specific GABAAR subtypes to dendritic and axon initial segment (AIS) synapses. Synaptic GABAARs are typically assembled from α1-3, ß and γ subunits. Here, we isolate distinct GABAARs from the brain and interrogate their composition using quantitative proteomics. We show that α2-containing receptors co-assemble with α1 subunits, whereas α1 receptors can form GABAARs with α1 as the sole α subunit. We demonstrate that α1 and α2 subunit-containing receptors co-purify with distinct spectrin isoforms; cytoskeletal proteins that link transmembrane proteins to the cytoskeleton. ß2-spectrin was preferentially associated with α1-containing GABAARs at dendritic synapses, while ß4-spectrin was associated with α2-containing GABAARs at AIS synapses. Ablating ß2-spectrin expression reduced dendritic and AIS synapses containing α1 but increased the number of synapses containing α2, which altered phasic inhibition. Thus, we demonstrate a role for spectrins in the synapse-specific targeting of GABAARs, determining the efficacy of fast neuronal inhibition.


Assuntos
Receptores de GABA-A , Espectrina , Receptores de GABA-A/metabolismo , Espectrina/metabolismo , Sinapses/metabolismo , Proteínas de Membrana/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Artigo em Zh | MEDLINE | ID: mdl-21826904

RESUMO

Trichinella spiralis has restrain effect on tumors. Different amount of T. spiralis can emerge different tumor inhibition effect T. spiralis infection can reduce tumor growth to various extents in mice bearing tumor cells at different times post infection. Each developmental stage of T. spiralis in the host may have anti-tumor effect T. spiralis may play anti-tumor roles by stimulating cell-mediated immune response, and/or possessing tumor-associated antigen and anti-tumor active substances of the parasite.


Assuntos
Antígenos de Neoplasias/imunologia , Imunidade Celular/imunologia , Neoplasias/imunologia , Trichinella spiralis/imunologia , Animais
15.
Curr Biol ; 31(17): 3810-3819.e4, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34289389

RESUMO

Skeletal muscle contraction depends on activation of clustered acetylcholine receptors (AchRs) and muscle-specific Na+ channels (Nav1.4). Some Nav1.4 channels are highly enriched at the neuromuscular junction (NMJ), and their clustering is thought to be essential for effective muscle excitation. However, this has not been experimentally tested, and how NMJ Na+ channels are clustered is unknown. Here, using muscle-specific ankyrinR, ankyrinB, and ankyrinG single, double, and triple-conditional knockout mice, we show that Nav1.4 channels fail to cluster only after deletion of all three ankyrins. Remarkably, ankyrin-deficient muscles have normal NMJ morphology, AchR clustering, sarcolemmal levels of Nav1.4, and muscle force, and they show no indication of degeneration. However, mice lacking clustered NMJ Na+ channels have significantly reduced levels of motor activity and their NMJs rapidly fatigue after repeated nerve-dependent stimulation. Thus, the triple redundancy of ankyrins facilitates NMJ Na+ channel clustering to prevent neuromuscular synapse fatigue.


Assuntos
Anquirinas , Músculo Esquelético , Animais , Anquirinas/genética , Análise por Conglomerados , Fadiga , Camundongos , Sinapses
16.
Mol Ecol Resour ; 21(6): 2093-2108, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33829635

RESUMO

The Arctic fox (Vulpes lagopus) is the only fox species occurring in the Arctic and has adapted to its extreme climatic conditions. Currently, the molecular basis of its adaptation to the extreme climate has not been characterized. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first V. lagopus genome assembly, which is assembled into chromosome fragments. The genome assembly has a total length of 2.345 Gb with a contig N50 of 31.848 Mb and a scaffold N50 of 131.537 Mb, consisting of 25 pseudochromosomal scaffolds. The V. lagopus genome had approximately 32.33% repeat sequences. In total, 21,278 protein-coding genes were predicted, of which 99.14% were functionally annotated. Compared with 12 other mammals, V. lagopus was most closely related to V. Vulpes with an estimated divergence time of ~7.1 Ma. The expanded gene families and positively selected genes potentially play roles in the adaptation of V. lagopus to Arctic extreme environment. This high-quality assembled genome will not only promote future studies of genetic diversity and evolution in foxes and other canids but also provide important resources for conservation of Arctic species.


Assuntos
Raposas , Genoma , Animais , Regiões Árticas , Cromossomos , Raposas/genética , Filogenia , Análise de Sequência de DNA/métodos
17.
Opt Express ; 18(12): 12371-80, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588363

RESUMO

Using resonator inserted with acousto-optically modulator, the experiments of the compacted CO(2) laser were performed with Q-switch. According to various factors that influenced the output of laser, the theoretical calculation of its main parameters was conducted by Q-switched pulsed laser rate equations. Based on the results, the technical route and approach were presented for optimization design of this laser. The measured peak power of this laser device was more than 4000W and pulsed width was 180ns which agreed well with the theoretical calculation. The range of repetition frequency could adjust from 1 Hz to 100 kHz. The theoretical analyzes and experimental results showed that the acoustic traveling time of ultrasonic field could not influence the pulse width of laser so that it did not require inserting optical lens in the cavity to reduce the diameter of beam. The acoustic traveling time only extended the establishingtime of laser pulse. The optimum working frequency of laser is about 1 kHz, which it matched with the radiation life time (1 ms) of CO(2) molecular upper energy level. When the frequency is above 1 kHz, the pulse width of laser increased with the frequency. The full band of wavelength tuning between 9.2 microm and 10.8 microm was obtained by grating selection one by one which the measured spectrum lines were over 30 in the condition of Q-switch.

18.
Polymers (Basel) ; 12(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679756

RESUMO

The method using ethanol to evaluate the cellulose insulation aging condition of oil-immersed transformers has been proposed. At present, the dominating method for detecting ethanol in insulating oil is to use headspace-gas-chromatography-mass-spectrometry (HS-GC-MS). However, the problem of quantitative inaccuracy will be sometimes encountered in the actual detection process due to improper instrument parameter setting and improper manual operation. In this study, as an aging marker, ethanol in transformer insulating oil was separated by using VF-624 ms capillary column. The effects of gas-chromatography-mass-spectrometry (GC-MS) optimization conditions, headspace equilibrium temperature, headspace equilibrium time and standard solution preparation method on the determination of ethanol content in oil were discussed, and optimized measures were proposed. The experimental results showed that the measurement can be more accurate under the headspace temperature of 80 °C and the headspace time of 40 min, and relative standard deviation percentage (RSD%) could reach to 4.62% under this condition. It was also pointed out that, for the preparation of standard solution, the method which controlled the sampling volume of anhydrous ethanol by microliter syringe could make the peak area of ethanol chromatogram have a better linear relationship with the standard curve. Under the similar linear range, the goodness of fitting curve without diluting process could be as high as 0.9993, while the method of preparing the stock solution and diluting stepwise to obtain the fitting curve only had a goodness of 0.9910. The method was validated by standard addition recovery test, and the recovery values obtained were between 90.3% and 95.8%. The optimized method is of great significance for the measurement of ethanol dissolved in insulating oil.

19.
J Neurosci ; 28(34): 8604-14, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18716219

RESUMO

The metabotropic glutamate receptor 7 (mGluR7) is widely expressed throughout the brain and primarily localized at presynaptic active zones, where it is thought to regulate neurotransmitter release. Protein interacting with C kinase 1 (PICK1), a postsynaptic density protein-95/disc-large tumor suppressor protein/zonula occludens-1 (PDZ)-domain protein, binds to the three C-terminal amino acids (-LVI) of the predominant mGluR7 splice variant, mGluR7a, and has been implicated in the synaptic clustering of this receptor. Here, we generated knock-in mice in which the C-terminal LVI coding sequence of exon 10 of the mGluR7 gene was replaced by three alanine codons (-AAA). Immunoprecipitation showed that the PICK1-mGluR7a interaction is disrupted in mGluR7a(AAA/AAA) mice. However, the synaptic localization of mGluR7a was not altered in cultured hippocampal neurons and brain sections prepared from the knock-in animals. In cerebellar granule cell cultures, the group III mGluR agonist l-AP-4 decreased the frequency of spontaneous excitatory currents in neurons derived from wild-type but not mGluR7a(AAA/AAA) mice, consistent with the interaction between mGluR7a and PICK1 being required for protein kinase C-mediated inhibition of glutamate release. At the behavioral level, the mGluR7a(AAA/AAA) mice showed no deficits in motor coordination, pain sensitivity, and anxiety but exhibited significant defects in hippocampus-dependent spatial working memory. In addition, they displayed a high susceptibility to the convulsant drug pentylenetetrazole. Together, these results indicate that PICK1 binding to the C-terminal region of mGluR7a is crucial for agonist-triggered presynaptic signaling in vivo.


Assuntos
Proteínas de Transporte/metabolismo , Convulsivantes , Antagonistas de Aminoácidos Excitatórios , Transtornos da Memória/genética , Proteínas Nucleares/metabolismo , Proteína Quinase C/metabolismo , Receptores de Glutamato Metabotrópico/genética , Convulsões/genética , Motivos de Aminoácidos/genética , Animais , Comportamento Animal , Encéfalo/patologia , Proteínas de Ciclo Celular , Células Cultivadas , Cerebelo/patologia , Cerebelo/fisiopatologia , Predisposição Genética para Doença , Ácido Glutâmico , Ligantes , Camundongos , Camundongos Transgênicos , Mutação , Inibição Neural , Oócitos , Pentilenotetrazol , Terminações Pré-Sinápticas , Isoformas de Proteínas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Convulsões/induzido quimicamente , Transdução de Sinais , Percepção Espacial , Sinapses , Xenopus laevis
20.
Poult Sci ; 98(11): 6117-6124, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189182

RESUMO

Ovarian follicle selection is the critical step which determines the oocyte development and ovulation. In avian species, the somatic cells in the follicles decide the process of follicle selection but the precise molecular regulation is not well defined. N6-methyladenosine (m6A) is a ubiquitous reversible epigenetic RNA modification that plays an important role in the gene expression regulation and cell functions. In this study, we profiled transcriptome-wide m6A methylation in chicken follicles during follicular selection process in order to identify key factors involved in the follicle selection. The chicken follicle transcriptome was extensively methylated by m6A and a negative correlation was found between the m6A methylation enrichment and gene expression levels. Interestingly, both the m6A methylation peaks and the m6A modified transcripts increased during follicle selection, which lead to the dynamic expression of many folliculogenesis relevant genes. Functional enrichment analysis indicated that m6A modification of key factors in Wnt pathway could play a major role in regulating follicle selection. This study is the first to comprehensively characterize the m6A patterns in the chicken transcriptome, and provides deep insights into the m6A topology and relevant molecular mechanisms underlying follicle selection.


Assuntos
Adenosina/análogos & derivados , Galinhas/metabolismo , Folículo Ovariano/fisiologia , Adenosina/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Metilação , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA