Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Microb Ecol ; 85(4): 1382-1395, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35583685

RESUMO

Understanding how microbial communities adapt to environmental stresses is critical for interpreting ecological patterns and microbial diversity. In the case of the Gobi Desert, little is known on the environmental factors that explain hypolithic colonization under quartz stones. By analyzing nine hypolithic communities across an arid gradient and the effects of the season of the year in the Hexi Corridor of this desert, we found a significant decrease in hypolithic colonization rates (from 47.24 to 15.73%) with the increasing drought gradient and found two distinct communities in Hot and Cold samples, which survived or proliferated after a hot or a cold period. While Cold communities showed a greater species diversity and a predominance of Cyanobacteria, Hot communities showed a predominance of members of the Proteobacteria and the Firmicutes. In comparison, Cold communities also possessed stronger functions in the photosynthesis and carbon metabolism. Based on the findings of this study, we proposed that the hypolithic communities of the Hexi Corridor of the Gobi Desert might follow a seasonal developmental cycle in which temperature play an important role. Thus after a critical thermal threshold is crossed, heterotrophic microorganisms predominate in the hot period, while Cyanobacteria predominate in the cold period.


Assuntos
Cianobactérias , Microbiota , Estações do Ano , Clima Desértico , Cianobactérias/genética , Temperatura , Microbiologia do Solo
2.
Antonie Van Leeuwenhoek ; 116(12): 1407-1419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847451

RESUMO

A novel Streptomyces strain, designated 3_2T, was isolated from soil under the black Gobi rock sample of Northwest China. The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that 3_2T was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces rimosus subsp. rimosus CGMCC 4.1438 (99.17%), Streptomyces sioyaensis DSM 40032 (98.97%). Strain 3_2T can grow in media up to 13% NaCl. The genomic DNA G + C content of strain 3_2T was 69.9%. We obtained the genomes of 22 Streptomyces strains similar to strain 3_2T, compared the average nucleotide similarity, dDDH and average amino acid identity, and found that the genomic similarity of the new isolate 3_2T to all strains was below the threshold for interspecies classification. Chemotaxonomic data revealed that strain 3_2T possessed MK-9 (H6) and MK-9 (H8) as the major menaquinones. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugars were ribose and glucose. The major fatty acid methyl esters were iso-C16:0 (23.6%) and anteiso-C15:0 (10.4%). The fermentation products of strain 3_2T were inhibitory to Staphylococcus aureus and Bacillus thuringiensi. The genome of 3_2T was further predicted using anti-smash and the strain was found to encode the production of 41 secondary metabolites, and these gene clusters may be key to the good inhibitory activity exhibited by the strain. Genomic analysis revealed that strain 3_2T can encode genes that produce a variety of genes in response to environmental stresses, including cold shock, detoxification, heat shock, osmotic stress, oxidative stress, and these genes may play a key role in the harsh environment in which the strain can survive. Therefore, this strain represents a novel Streptomyces species, for which the name Streptomyces halobius sp. nov. is proposed. The type strain is 3_2T (= JCM 34935T = GDMCC 4.217T).


Assuntos
Anti-Infecciosos , Streptomyces , RNA Ribossômico 16S/genética , Solo , Ácidos Graxos/análise , Genômica , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Fosfolipídeos/análise , Técnicas de Tipagem Bacteriana
3.
Antonie Van Leeuwenhoek ; 117(1): 5, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153511

RESUMO

Gram-stain-negative, aerobic, rod-shaped, non-motile bacterium strain ZFBP2030T was isolated from a rock on the North slope of Mount Everest. This strain contained a unique ubiquinone-10 (Q-10) as a predominant respiratory quinone. Among the tested fatty acids, the strain contained summed feature 8, C14:0 2OH, and C16:0, as major cellular fatty acids. The polar lipid profile contained phosphatidyl glycerol, phosphatidyl ethanolamine, three unidentified phospholipids, two unidentified aminolipids, and six unidentified lipids. The cell-wall peptidoglycan was a meso-diaminopimelic acid, and cell-wall sugars were ribose and galactose. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain ZFBP2030T was a member of the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas aliaeris DH-S5T (97.9%), Sphingomonas alpina DSM 22537T (97.3%) and Sphingomonas hylomeconis CCTCC AB 2013304T (97.0%). The 16S rRNA gene sequence similarity between ZFBP2030T and other typical strains was less than 97.0%. The average amino acid identity values, average nucleotide identity, and digital DNA-DNA hybridization values between strain ZFBP2030T and its highest sequence similarity strains were 56.9-79.9%, 65.1-82.2%, and 19.3-25.8%, respectively. The whole-genome size of the novel strain ZFBP2030T was 4.1 Mbp, annotated with 3838 protein-coding genes and 54 RNA genes. Moreover, DNA G + C content was 64.7 mol%. Stress-related functions predicted in the subsystem classification of the strain ZFBP2030T genome included osmotic, oxidative, cold/heat shock, detoxification, and periplasmic stress responses. The overall results of this study clearly showed that strain ZFBP2030T is a novel species of the genus Sphingomonas, for which the name Sphingomonas endolithica sp. nov. is proposed. The type of strain is ZFBP2030T (= EE 013T = GDMCC 1.3123T = JCM 35386T).


Assuntos
Sphingomonas , Filogenia , RNA Ribossômico 16S/genética , Sphingomonas/genética , Genômica , Bactérias , Ácidos Graxos , DNA
4.
BMC Microbiol ; 22(1): 265, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335290

RESUMO

BACKGROUND: The bacterial mechanisms responsible for hydrogen peroxide (H2O2) scavenging have been well-reported, yet little is known about how bacteria isolated from cold-environments respond to H2O2 stress. Therefore, we investigated the transcriptional profiling of the Planomicrobium strain AX6 strain isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China, in response to H2O2 stress aiming to uncover the molecular mechanisms associated with H2O2 scavenging potential. METHODS: We investigated the H2O2-scavenging potential of the bacterial Planomicrobium strain AX6 isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China. Furthermore, we used high-throughput RNA-sequencing to unravel the molecular aspects associated with the H2O2 scavenging potential of the Planomicrobium strain AX6 isolate. RESULTS: In total, 3,427 differentially expressed genes (DEGs) were identified in Planomicrobium strain AX6 isolate in response to 4 h of H2O2 (1.5 mM) exposure. Besides, Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses revealed the down- and/or up-regulated pathways following H2O2 treatment. Our study not only identified the H2O2 scavenging capability of the strain nevertheless also a range of mechanisms to cope with the toxic effect of H2O2 through genes involved in oxidative stress response. Compared to control, several genes coding for antioxidant proteins, including glutathione peroxidase (GSH-Px), Coproporphyrinogen III oxidase, and superoxide dismutase (SOD), were relatively up-regulated in Planomicrobium strain AX6, when exposed to H2O2. CONCLUSIONS: Overall, the results suggest that the up-regulated genes responsible for antioxidant defense pathways serve as essential regulatory mechanisms for removing H2O2 in Planomicrobium strain AX6. The DEGs identified here could provide a competitive advantage for the existence of Planomicrobium strain AX6 in H2O2-polluted environments.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Tibet , Ecossistema , China , Bactérias
5.
Artigo em Inglês | MEDLINE | ID: mdl-35320067

RESUMO

A novel actinomycete, strain 1_25T, was isolated from soil under a black Gobi rock sample from Shuangta, PR China, and characterized using a polyphasic taxonomic approach. The results of comparative analysis of the 16S rRNA gene sequences indicated the 1_25T represented a member of the genus Streptomyces. Chemotaxonomic data revealed that 1_25T possessed MK-9(H8) as the major menaquinone. The cell wall contained ll-diaminopimelic acid (ll-DAP) and the whole-cell sugar pattern consisted of ribose, glucose and galactose. Major fatty acid methyl esters were observed to be iso-C16 : 0 (23.6 %), and anteiso-C15 : 0 (10.4 %). The genomic DNA G+C content of 1_25T was 69 mol %. The results of phylogenetic analysis based on 16S rRNA gene sequence indicated that 1_25T had high sequence similarity with Streptomyces qinglanensis 172205T (98.1 %), Streptomyces lycii TRM 66187T (98 %), and Streptomyces griseocarneus JCM4580T (98 %). In addition to the differences in phenotypic characters, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between 1_25T and closely related species were below the recommended threshold values for assigning strains to the same species. The fermentation product of 1_25T in ISP2 had an inhibitory effect on Staphylococcus aureus. On the basis of these genotypic and phenotypic characteristics, strain 1_25T (=JCM 34936T=GDMCC 4.216T) represents a novel species of the genus Streptomyces, for which the name Streptomyces gobiensis sp. nov. is proposed.


Assuntos
Actinobacteria , Anti-Infecciosos , Streptomyces , Actinobacteria/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35412454

RESUMO

A bacterial strain, designated S9-5T, was isolated from moraine samples collected from the north slope of Mount Everest at an altitude of 5 500 m above sea level. A polyphasic study confirmed the affiliation of the strain with the genus Sphingomonas. Strain S9-5T was an aerobic, Gram-stain-negative, non-spore-forming, non-motile and rod-shaped bacterium that could grow at 10-40 °C, pH 5-8 and with 0-9 % (w/v) NaCl. Q-10 was its predominant respiratory menaquinone. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminophospholipid and eight unidentified lipids comprised the polar lipids of strain S9-5T. Its major fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The G+C content was 65.75mol%. Phylogenetic analysis based on 16S rRNA sequences showed that strain S9-5T was phylogenetically closely related to Sphingomonas panaciterrae DCY91T (98.17 %), Sphingomonas olei K-1-16T (98.11 %) and Sphingomonas mucosissima DSM 17494T (97.39 %). The average nucleotide identity values among strain S9-5T and Sphingomonas panaciterrae DCY91T, Sphingomonas olei K-1-16T and Sphingomonas mucosissima DSM 17494T were 78.82, 78.87 and 78.29 %, respectively. Based on the morphological, physiological and chemotaxonomic data, strain S9-5T (=JCM 34750T=GDMCC 1.2714T) should represent a novel species of the genus Sphingomonas, for which we propose the name Sphingomonas radiodurans sp. nov.


Assuntos
Sphingomonas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36129740

RESUMO

A bacterial strain, designated S8-55T, was isolated from moraine samples collected from the north slope of Mount Everest at an altitude of 5 500 m above sea level. The purpose of this study was to describe a novel species and its characteristics, through genome sequencing and analysis of the relationship between the members of the genus Paracoccus, and explore the antioxidant capacity of strain S8-55T. The polyphasic study confirmed the affiliation of strain S8-55T with the genus Paracoccus. Strain S8-55T was aerobic, Gram-negative and oxidase- and catalase positive. Cells were orange-pigmented, ellipsoid and had no spore formation, no flagella and no motility. Strain S8-55T grow at 10-37 °C, pH 7-11 and without NaCl. Ubiquinone 10 was its predominant respiratory menaquinone. The polar lipids of strain S8-55T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid, an unidentified aminolipid and three unidentified lipids. Its major fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The G+C content was 64.3 mol%. The phylogenetic analysis based on the 16S rRNA sequence showed that strain S8-55T was closely related to Paracoccus angustae E6T (97.9 %), Paracoccus aerius 011410T (97.9 %) and Paracoccus hibisci THG-T2.8T (97.8 %). The average nucleotide identity values among strain S8-55T and P. angustae CCTCC AB 2015056T, P. aerius KCTC 42845T and P. hibisci CCTCC AB 2016181T were 84.1, 84.5 and 76.3 %, respectively. The genome of strain S8-55T contained antioxidant genes such as oxyR, recD, katE, recD and rpoH. Based on its morphological, physiological and chemical taxonomic characteristics, strain S8-55T (=JCM 35 227T=GDMCC 1.3026T) should be classified as a novel species of the genus Paracoccus with the proposed name Paracoccus everestensis sp. nov.


Assuntos
Antioxidantes , Paracoccus , Técnicas de Tipagem Bacteriana , Composição de Bases , Cardiolipinas , Catalase/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Nucleotídeos , Fosfatidilcolinas , Fosfatidiletanolaminas , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Vitamina K 2
8.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748457

RESUMO

Bacteria in the genus Arthrobacter have been found in extreme environments, e.g. glaciers, brine and mural paintings. Here, we report the discovery of a novel pink-coloured bacterium, strain QL17T, capable of producing an extracellular water-soluble blue pigment. The bacterium was isolated from the soil of the East Rongbuk Glacier of Mt. Everest, China. 16S rRNA gene sequence analysis showed that strain QL17T was most closely related to the species Arthrobacter bussei KR32 T. However, compared to A.bussei KR32T and the next closest relatives, the new species demonstrates considerable phylogenetic distance at the whole-genome level, with an average nucleotide identity of <85 % and inferred DNA-DNA hybridization of <30 %. Polyphasic taxonomy results support our conclusion that strain QL17T represents a novel species of the genus Arthrobacter. Strain QL17T had the highest tolerance to hydrogen peroxide at 400 mM. Whole-genome sequencing of strain QL17T revealed the presence of numerous cold-adaptation, antioxidation and UV resistance-associated genes, which are related to adaptation to the extreme environment of Mt. Everest. Results of this study characterized a novel psychrotolerant Arthrobacter species, for which the name Arthrobacter antioxidans sp. nov. is proposed. The type strain is QL17T (GDMCC 1.2948T=JCM 35246T).


Assuntos
Arthrobacter , Ácidos Graxos/química , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana
9.
Arch Microbiol ; 203(6): 2809-2823, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33730221

RESUMO

Limited knowledge about the variation patterns of bacterial community composition in the sand and vegetative ecosystems confines our understanding regarding the contribution of the sand dune to desert areas. In this study, 454 pyrosequencing platforms were adopted to determine the community structure of bacteria and diversity of sand dunes in northeastern Qinghai-Tibet Plateau, China: 50 cm deep, rhizosphere, physical crusts, and biological crusts representing sand and vegetative ecosystems, respectively. The findings revealed significant variation in bacterial diversities and the structure of communities in the sand and vegetative ecosystems. The dominant bacterial phyla of sand and vegetative ecosystems were Firmicutes (47%), Actinobacteria (21%), Proteobacteria (16%), and Bacteroidetes (13%), while Lactococcus (50%) was found to be the dominant genus. Furthermore, samples with high alpha-diversity indices (Chao 1 and Shannon) for the vegetative ecosystem have the lowest modularity index and the largest number of biomarkers, with some exceptions. Redundancy analysis exhibited that environmental factors could explain 72% (phyla) and 67% (genera) of the bacterial communities, with EC, TC, and TOC being the major driving factors. This study expands our understanding of bacterial community composition in the desert ecosystem. The findings suggest that variations in the sand and vegetative ecosystems, such as those predicted by environmental factors, may reduce the abundance and diversity of bacteria, a response that likely affects the provision of key ecosystem processes by desert regions.


Assuntos
Bactérias/classificação , Microbiologia do Solo , Ecossistema , Microbiota , Tibet
10.
Artigo em Inglês | MEDLINE | ID: mdl-33270002

RESUMO

A bacterial strain, designated Y40T, was isolated from sandy soil sampled on the Qinghai-Tibet Plateau. A polyphasic study confirmed the affiliation of the strain with the genus Mesobacillus. Strain Y40T was found to be an aerobic, Gram-stain-positive, motile and rod-shaped bacterium. The strain grew at 10-42 °C, pH 6-9 and with 0-2 % (w/v) NaCl. The diagnostic amino acid was meso-diaminopimeilic acid. MK7 was predominant menaquinone, and iso-C15:0, iso-C17:1 ω10c and anteiso-C15:0 were the major fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid. The DNA G+C content was 40.6 mol%. Based on he results of 16S rRNA gene sequence analysis, strain Y40T was phylogenetically closely related to Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T, with similarities of 98.0 and 97.7 %, respectively. The average nucleotide identity (ANIb) values between strain Y40T and Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T were 69.9 and 70.0 %, respectively. Based on the morphological, physiological, and chemotaxonomic data, it is proposed that strain Y40T (=CICC 24459T=JCM 32794T) should be classified into the genus Mesobacillus as Mesobacillus harenae sp. nov.


Assuntos
Bacillaceae/classificação , Clima Desértico , Filogenia , Areia/microbiologia , Microbiologia do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Temperatura Baixa , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Microb Ecol ; 82(3): 652-665, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33598747

RESUMO

Coastal salinity typically alters the soil microbial communities, which subsequently affect the biogeochemical cycle of nutrients in the soil. The seasonal variation of the soil fungal communities in the coastal area, closely associated with plant population, is poorly understood. This study provides an insight into the fungal community's variations from autumn to winter and spring to summer at a well-populated area of salt-tolerant Tamarix chinensis and beach. The richness and diversity of fungal community were higher in the spring season and lower in the winter season, as showed by high throughput sequencing of the 18S rRNA gene. Ascomycota was the predominant phylum reported in all samples across the region, and higher difference was reported at order level across the seasonal variations. The redundancy analysis suggested that the abundance and diversity of fungal communities in different seasons are mainly correlated to total organic carbon and total nitrogen. Additionally, the saprotrophic and pathotrophic fungi decreased while symbiotic fungi increased in the autumn season. This study provides a pattern of seasonal variation in fungal community composition that further broadens our limited understanding of how the density of the salt-tolerant T. chinensis population of the coastal saline soil could respond to their seasonal variations.


Assuntos
Micobioma , Tamaricaceae , Baías , China , Fungos/genética , Estações do Ano , Solo , Microbiologia do Solo
12.
Int J Syst Evol Microbiol ; 70(4): 2435-2439, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32559833

RESUMO

A bacterial strain, designated GEM5T, was isolated from sand soil samples from the Qinghai-Tibet Plateau. The polyphasic study confirmed the affiliation of the isolate with the genus Massilia. GEM5T had Gram-stain-negative, non-spore-forming and rod-shaped cells and grew at 4-30 °C, pH 6-8 and with 0-2 % (w/v) NaCl. Its cell wall contained ribose. Q8 was the predominant respiratory quinone, and summed feature 3 (C16 : 1ω6c/ω7c) and C16 : 0 were the major components of the fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and four unidentified lipids. The DNA G+C content was 65.1 mol%. The phylogenetic analysis based on the 16S rRNA gene showed a stable clade being formed by GEM5T, Massilia timonae CCUG 45783T (97.94 %) and Massilia oculi CCUG 43427AT (97.58 %). The average nucleotide identity (ANIb) values between GEM5T and M. timonae CCUG 45783T, M.oculi CCUG 43427AT were 91.3 and 91.7 %, respectively. On the basis of the morphological, physiological and chemotaxonomic pattern, it was proposed that strain GEM5T (=JCM 32744T=CICC 24458T) should be classified as representing a member of the genus Massilia with the name Massilia arenae sp. nov.


Assuntos
Oxalobacteraceae/classificação , Filogenia , Areia/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oxalobacteraceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 70(12): 6338-6347, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118923

RESUMO

A Gram-stain-positive, aerobic, rod-shaped, non-motile, endospore-forming and UV-resistant bacterial strain, designated strain TKL69T, was isolated from sandy soil sampled in the Taklimakan Desert. The strain grew at 20-50 °C, pH 6-9 and with 0-12 % (w/v) NaCl. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. The only respiratory quinone was MK-7. The cell-wall peptidoglycan was meso-diaminopimelic acid. Diphosphatidyl glycerol, two unidentified aminophospholipids and one unidentified phospholipid were identified as the major polar lipids. Genomic DNA analysis revealed a G+C content of 38.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TKL69T has the highest similarity to Salinibacillus xinjiangensis CGMCC 1.12331T (96.9 %) but belongs to an independent taxon separated from other genera of the family Bacillaceae. Phylogenetic, phenotypic and chemotaxonomic analyses suggested that strain TKL69T represents a novel species of a new genus, for which the name Radiobacillus gen. nov., sp. nov. is proposed, with the type strain being Radiobacillus deserti TKL69T (=JCM 33497T=CICC 24779T).


Assuntos
Bacillaceae/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Antonie Van Leeuwenhoek ; 113(6): 839-850, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32114684

RESUMO

A Gram-staining-positive and aerobic coccus with the ability to degrade petroleum bacterium, designated Y42T, was isolated from the Lenghu oil field located in the northern margin of the Qaidam Basin. Phylogenetic and signature nucleotides analyses revealed that strain Y42T belongs to the genus Planococcus. The multiple sequence alignments of 16S rRNA and housekeeping genes showed that strain Y42T formed a distinct lineage with the other Planococcus clade. The average nucleotide identity (ANI) and DNA-DNA hybridization values (DDH) between strain Y42T and the reference strains were 69.5-70.1 and 19.4-21.7%, respectively, which values were below the threshold for species delineation. The major fatty acids of strain Y42T were anteiso-C15:0. The respiratory quinone was MK-7 (71.8%) as the predominant menaquinone followed the MK-6 (28.2%) and the cell-wall hydrolysates contained LL-diaminopimelic acid. The polar lipid was composed of diphosphatidyl glycerol, phosphatidyl glycerol, phosphoglycolipid, aminophospholipid and four unidentified lipids. The peptidoglycan type was A4α (L-Lys-D-Glu). The strain Y42T possessed larger genome (approximately 4 MB) and revealed obvious differences for the abundance of the COG categories compared with the other Planococcus bacteria. Also, the strain Y42T also possessed more unique orthologous proteins. The structural characteristics of the strain Y42T genome provided a competitive advantage for better survival in petroleum-polluted environments. Combined with the 16S rRNA gene and genome sequence, phenotypic as well as chemotaxonomic characterisations, strain Y42T is considered to represent a novel species of the genus Planococcus, for which the name Planococcus lenghuensis sp. nov. be proposed. The type strain is Y42T (= CGMCC 1.15921T = JCM 32719T).


Assuntos
Planococcus (Bactéria) , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Ácidos Graxos/análise , Genes Bacterianos , Genoma Bacteriano , Óleos/metabolismo , Peptidoglicano/análise , Petróleo/metabolismo , Fenótipo , Fosfolipídeos/análise , Filogenia , Planococcus (Bactéria)/classificação , Planococcus (Bactéria)/genética , Planococcus (Bactéria)/isolamento & purificação , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Vitamina K 2/análise
15.
Genomics ; 111(3): 356-366, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474825

RESUMO

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3 Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.


Assuntos
Genes Bacterianos , Nocardia/genética , Petróleo/metabolismo , Biodegradação Ambiental , Ilhas Genômicas , Hidrocarbonetos/metabolismo , Nocardia/metabolismo , Microbiologia do Solo , Tensoativos/metabolismo
16.
Int J Syst Evol Microbiol ; 69(2): 397-403, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30543508

RESUMO

A Gram-stain-positive, aerobic, non-motile and mycolic-acid-containing strain, designated Y48T, was isolated from soil contaminated by crude oil located in the northern margin of the Qaidam Basin. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Y48T belongs to the genus Nocardia and is closely related to N. cummidelens DSM 44490T (99.0 % similarity), N. soli DSM 44488T (99.0 %), N. lasii 3C-HV12T (98.9 %), N. salmonicida NBRC 13393T (98.6 %), N. ignorata NBRC 108230T (98.6 %) and N. coubleae NBRC 108252T (98.6 %). The average nucleotide identity and DNA-DNA hybridization values between strain Y48T and the reference strains were 75.9-84.5 and 27.5-29.0 %, respectively, values that were below the thresholds for species delineation. Chemotaxonomic analysis indicated that the major fatty acids of strain Y48T were C16 : 0, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c), C18 : 1ω9c and C18 : 0 10-methyl (TBSA). The respiratory quinone was MK-8(H4, ω-cycl). The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, two glycolipids and three unidentified lipids. The cell-wall hydrolysates contained meso-diaminopimelic acid, with ribose, arabinose, glucose and galactose as whole-cell sugars. A combination of 16S rRNA gene sequence analysis, and phenotypic and chemotaxonomic characterizations demonstrated that strain Y48T represents a novel species of the genus Nocardia, for which the name Nocardia mangyaensis sp. nov. is proposed. The type strain is Y48T (=JCM 32795T=CGMCC 4.7494T).


Assuntos
Nocardia/classificação , Poluição por Petróleo , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Nocardia/isolamento & purificação , Hibridização de Ácido Nucleico , Petróleo , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo , Tibet , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Extremophiles ; 22(6): 851-863, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30027412

RESUMO

Indigenous iron-oxidizing bacteria were isolated on modified selective 9KFe2+ medium from Baiyin copper mine stope, China. Three distinct acidophilic bacteria were isolated and identified by analyzing the sequences of 16S rRNA gene. Based on published sequences of 16S rRNA gene in the GenBank, a phylogenetic tree was constructed. The sequence of isolate WG101 showed 99% homology with Acidithiobacillus ferrooxidans strain AS2. Isolate WG102 exhibited 98% similarity with Leptospirillum ferriphilum strain YSK. Similarly, isolate WG103 showed 98% similarity with Leptospirillum ferrooxidans strain L15. Furthermore, the biotechnological potential of these isolates in consortia form was evaluated to recover copper and zinc from their ore. Under optimized conditions, 77.68 ± 3.55% of copper and 70.58 ± 3.77% of zinc were dissolved. During the bioleaching process, analytical study of pH and oxidation-reduction potential fluctuations were monitored that reflected efficient activity of the bacterial consortia. The FTIR analysis confirmed the variation in bands after treatment with consortia. The impact of consortia on iron speciation within bioleached ore was analyzed using Mössbauer spectroscopy and clear changes in iron speciation was reported. The use of indigenous bacterial consortia is more efficient compared to pure inoculum. This study provided the basic essential conditions for further upscaling bioleaching application for metal extraction.


Assuntos
Cobre/metabolismo , Ferro/metabolismo , Microbiota , Minerais/química , Zinco/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/isolamento & purificação , Biotransformação , Cobre/análise , Microbiologia Industrial/métodos , Minerais/metabolismo , Oxirredução , Zinco/análise
18.
Ecotoxicology ; 23(10): 1833-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25149869

RESUMO

The effects of enhanced UV-B radiation on abundance, community composition and the total microbial activity of soil bacteria in alpine meadow ecosystem of Qinghai-Tibet Plateau were investigated. Traditional counting and 16S rRNA gene sequencing were used to investigate the culturable bacteria and their composition in soil, meanwhile the total microbial activity was measured by microcalorimetry. The population of soil culturable bacteria was slightly reduced with the enhanced UV-B radiation in both of the two depths, 2.46 × 10(6) CFU/g in upper layer (0-10 cm), 1.44 × 10(6) CFU/g in under layer (10-20 cm), comparing with the control (2.94 × 10(6) CFU/g in upper layer, 1.65 × 10(6) CFU/g in under layer), although the difference was not statistically significant (P > 0.05). However, the bacteria diversity decreased obviously due to enhanced UV-B, the number of species for upper layer was decreased from 20 to 13, and from 16 to 13 for the lower layer. The distribution of species was also quite different between the two layers. Another obvious decrease induced by enhanced UV-B radiation was in the total soil microbial activities, which was represented by the microbial growth rate constant (k) in this study. The results indicated that the culturable bacteria community composition and the total activity of soil microbes have been considerably changed by the enhanced UV-B radiation.


Assuntos
Biodiversidade , Pradaria , Microbiologia do Solo , Raios Ultravioleta , Ecossistema , Tibet
19.
Clin Interv Aging ; 19: 141-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292460

RESUMO

Sarcopenia is an age-related condition characterized by the loss of skeletal muscle mass, muscular strength, and muscle function. In older adults, type 2 diabetes mellitus (T2DM) constitutes a significant health burden. Skeletal muscle damage and deterioration have emerged as novel chronic complications in patients with diabetes, often linked to their increased longevity. Diabetic sarcopenia has been associated with increased rates of hospitalization, cardiovascular events, and mortality. Nevertheless, effectively managing metabolic disorders in patients with T2DM through appropriate therapeutic interventions could potentially mitigate the risk of sarcopenia. Utilizing imaging technologies holds substantial clinical significance in the early detection of skeletal muscle mass alterations associated with sarcopenia. Such detection is pivotal for arresting disease progression and preserving patients' quality of life. These imaging modalities offer reproducible and consistent patterns over time, as they all provide varying degrees of quantitative data. This review primarily delves into the application of dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging, and ultrasound for both qualitative and quantitative assessments of muscle mass in patients with T2DM. It also juxtaposes the merits and limitations of these four techniques. By understanding the nuances of each method, clinicians can discern how best to apply them in diverse clinical scenarios.


Assuntos
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Idoso , Sarcopenia/diagnóstico por imagem , Sarcopenia/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Músculo Esquelético/patologia , Qualidade de Vida , Força Muscular/fisiologia
20.
Front Microbiol ; 15: 1348758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894973

RESUMO

A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA