Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8002): 101-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418886

RESUMO

Li-ion batteries (LIBs) for electric vehicles and aviation demand high energy density, fast charging and a wide operating temperature range, which are virtually impossible because they require electrolytes to simultaneously have high ionic conductivity, low solvation energy and low melting point and form an anion-derived inorganic interphase1-5. Here we report guidelines for designing such electrolytes by using small-sized solvents with low solvation energy. The tiny solvent in the secondary solvation sheath pulls out the Li+ in the primary solvation sheath to form a fast ion-conduction ligand channel to enhance Li+ transport, while the small-sized solvent with low solvation energy also allows the anion to enter the first Li+ solvation shell to form an inorganic-rich interphase. The electrolyte-design concept is demonstrated by using fluoroacetonitrile (FAN) solvent. The electrolyte of 1.3 M lithium bis(fluorosulfonyl)imide (LiFSI) in FAN exhibits ultrahigh ionic conductivity of 40.3 mS cm-1 at 25 °C and 11.9 mS cm-1 even at -70 °C, thus enabling 4.5-V graphite||LiNi0.8Mn0.1Co0.1O2 pouch cells (1.2 Ah, 2.85 mAh cm-2) to achieve high reversibility (0.62 Ah) when the cells are charged and discharged even at -65 °C. The electrolyte with small-sized solvents enables LIBs to simultaneously achieve high energy density, fast charging and a wide operating temperature range, which is unattainable for the current electrolyte design but is highly desired for extreme LIBs. This mechanism is generalizable and can be expanded to other metal-ion battery electrolytes.

2.
J Am Chem Soc ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816747

RESUMO

Lithium metal batteries face problems from sluggish charge transfer at interfaces, as well as parasitic reactions between lithium metal anodes and electrolytes, due to the strong electronegativity of oxygen donor solvents. These factors constrain the reversibility and kinetics of lithium metal batteries at low temperatures. Here, a nonsolvating cosolvent is applied to weaken the electronegativity of donor oxygen in ether solvents, enabling the participation of anionic donors in the solvation structure of Li+. This strategy significantly accelerates the desolvation process of Li+ and reduces the side effects of solvents on interfacial transport and stability. The designed anion-aggregated electrolyte has a unique temperature-insensitive solvation structure and enables lithium metal anodes to achieve a high average Coulombic efficiency at room temperature and -20 °C. A high-loading LiFePO4||Li cell exhibited high reversibility with a 100% capacity retention after 150 cycles at room temperature, -20, and -40 °C. The practical 1 Ah-level LiFePO4||Li pouch-cell delivered 81% and 61% of the capacity at room temperature when charged and discharged at -20 and -40 °C, respectively. This strategy of constructing temperature-insensitive solvation by electronegativity regulation offers a novel approach for developing electrolytes of low-temperature batteries.

3.
Small ; 20(2): e2305464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658520

RESUMO

The utilization of layered oxides as cathode materials has significantly contributed to the advancement of the lithium-ion batteries (LIBs) with high energy density and reliability. However, the structural and interfacial instability triggered by side reactions when charged to high voltage has plagued their practical applications. Here, this work reports a novel multifunctional additive, id est, 7-Anilino-3-diethylamino-6-methyl fluoran (ADMF), which exhibits unique characteristics such as preferential adsorption, oxygen scavenging, and electropolymerization protection for high-voltage cathodes. The ADMF demonstrates the capability to ameliorate the growth of cathode-electrolyte interphase (CEI), effectively diminishing the dissolution of transition metal (TM) ions, reducing the interface impedance, and facilitating the Li+ transport. As a result, ADMF additive with side reaction-blocking ability significantly enhances the cycling stability of MCMB||NCM811 full-cells at 4.4 V and MCMB||LCO full-cells at 4.55 V, as evidenced by the 80% retention over 600 cycles and 87% retention after 750 cycles, respectively. These findings highlight the potential of the additive design strategy to modulate the CEI chemistry, representing a new paradigm with profound implications for the development of next-generation high-voltage LIBs.

4.
Nature ; 563(7732): E27, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30250255

RESUMO

We wish to correct two mutations in Supplementary Table 4 of this Letter. The NCI-H460 cell line was annotated as being mutant for TP53. NCI-H460 has been verified to be TP53 wild type by several sources1. The NCI-H2009 cell line was annotated as being mutant for PIK3CA. As annotated by COSMIC (ref. 24 of the original Letter) and CCLE (ref. 25 of the original Letter), the NCI-H2009 cell line has a mutation in PIK3C3, rather than PIK3CA. The cell line is wild type for PIK3CA. The Supplementary Information of this Amendment contains the corrected Supplementary Table 4. These errors do not affect our conclusions. The original Letter has not been corrected.

5.
Angew Chem Int Ed Engl ; 62(11): e202218970, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688728

RESUMO

Although great progress has been made in new electrolytes for lithium metal batteries (LMBs), the intrinsic relationship between electrolyte composition and cell performance remains unclear due to the lack of valid quantization method. Here, we proposed the concept of negative center of electrostatic potential (NCESP) and Mayer bond order (MBO) to describe solvent capability, which highly relate to solvation structure and oxidation potential, respectively. Based on established principles, the selected electrolyte with 1.7 M LiFSI in methoxytrimethylsilane (MOTMS)/ (trifluoromethyl)trimethylsilane (TFMTMS) shows unique hyperconjugation nature to stabilize both Li anode and high-voltage cathode. The 4.6 V 30 µm Li||4.5 mAh cm-2 lithium cobalt oxide (LCO) (low N/P ratio of 1.3) cell with our electrolyte shows stable cycling with 91 % capacity retention over 200 cycles. The bottom-up design concept of electrolyte opens up a general strategy for advancing high-voltage LMBs.

6.
Nature ; 534(7605): 129-32, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251290

RESUMO

The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.


Assuntos
Antineoplásicos/farmacologia , Benzenoacetamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Proteínas Mutantes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Modelos Animais de Doenças , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
7.
Genes Dev ; 28(5): 479-90, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24589777

RESUMO

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.


Assuntos
Cardiomiopatias/genética , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Doenças Neurodegenerativas/genética , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/patologia , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiopatologia , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia
8.
Nature ; 520(7546): 239-42, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25629630

RESUMO

Non-small-cell lung cancer is the leading cause of cancer-related death worldwide. Chemotherapies such as the topoisomerase II (TopoII) inhibitor etoposide effectively reduce disease in a minority of patients with this cancer; therefore, alternative drug targets, including epigenetic enzymes, are under consideration for therapeutic intervention. A promising potential epigenetic target is the methyltransferase EZH2, which in the context of the polycomb repressive complex 2 (PRC2) is well known to tri-methylate histone H3 at lysine 27 (H3K27me3) and elicit gene silencing. Here we demonstrate that EZH2 inhibition has differential effects on the TopoII inhibitor response of non-small-cell lung cancers in vitro and in vivo. EGFR and BRG1 mutations are genetic biomarkers that predict enhanced sensitivity to TopoII inhibitor in response to EZH2 inhibition. BRG1 loss-of-function mutant tumours respond to EZH2 inhibition with increased S phase, anaphase bridging, apoptosis and TopoII inhibitor sensitivity. Conversely, EGFR and BRG1 wild-type tumours upregulate BRG1 in response to EZH2 inhibition and ultimately become more resistant to TopoII inhibitor. EGFR gain-of-function mutant tumours are also sensitive to dual EZH2 inhibition and TopoII inhibitor, because of genetic antagonism between EGFR and BRG1. These findings suggest an opportunity for precision medicine in the genetically complex disease of non-small-cell lung cancer.


Assuntos
DNA Helicases/genética , Genes erbB-1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Complexo Repressor Polycomb 2/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Fatores de Transcrição/genética , Anáfase/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Terapia de Alvo Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS Genet ; 14(3): e1007242, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29561836

RESUMO

Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-ß in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.


Assuntos
Doenças Ósseas/congênito , Nanismo/metabolismo , Osteoblastos/patologia , Proteoglicanas/metabolismo , Dermatopatias Genéticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Diferenciação Celular , Decorina/metabolismo , Dermatan Sulfato/metabolismo , Modelos Animais de Doenças , Nanismo/patologia , Feminino , Fraturas Ósseas/genética , Glicosilação , Proteínas da Matriz do Complexo de Golgi , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/metabolismo , Transdução de Sinais , Dermatopatias Genéticas/patologia , Proteínas de Transporte Vesicular/genética
10.
Mol Cell ; 42(4): 451-64, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21514197

RESUMO

DNA methylation at the 5 position of cytosine (5mC) in the mammalian genome is a key epigenetic event critical for various cellular processes. The ten-eleven translocation (Tet) family of 5mC-hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), offers a way for dynamic regulation of DNA methylation. Here we report that Tet1 binds to unmodified C or 5mC- or 5hmC-modified CpG-rich DNA through its CXXC domain. Genome-wide mapping of Tet1 and 5hmC reveals mechanisms by which Tet1 controls 5hmC and 5mC levels in mouse embryonic stem cells (mESCs). We also uncover a comprehensive gene network influenced by Tet1. Collectively, our data suggest that Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting 5mC to 5hmC through hydroxylase activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 targets, ultimately contributing to mESC differentiation and the onset of embryonic development.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Estudo de Associação Genômica Ampla , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína
11.
Adv Mater ; : e2402324, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696823

RESUMO

Rechargeable all-solid-state lithium metal batteries (ASSLMBs) utilizing inorganic solid-state electrolytes (SSEs) are promising for electric vehicles and large-scale grid energy storage. However, the Li dendrite growth in SSEs still constrains the practical utility of ASSLMBs. To achieve a high dendrite-suppression capability, SSEs must be chemically stable with Li, possess fast Li transfer kinetics, and exhibit high interface energy. Herein, a class of low-cost, eco-friendly, and sustainable oxyhalide-nitride solid electrolytes (ONSEs), denoted as LixNyIz-qLiOH (where x = 3y + z, 0 ≤ q ≤ 0.75), is designed to fulfill all the requirements. As-prepared ONSEs demonstrate chemically stable against Li and high interface energy (>43.08 meV Å-2), effectively restraining Li dendrite growth and the self-degradation at electrode interfaces. Furthermore, improved thermodynamic oxidation stability of ONSEs (>3 V vs Li+/Li, 0.45 V for pure Li3N), arising from the increased ionicity of Li─N bonds, contributes to the stability in ASSLMBs. As a proof-of-concept, the optimized ONSEs possess high ionic conductivity of 0.52 mS cm-1 and achieve long-term cycling of Li||Li symmetric cell for over 500 h. When coupled with the Li3InCl6 SSE for high-voltage cathodes, the bilayer oxyhalide-nitride/Li3InCl6 electrolyte imparts 90% capacity retention over 500 cycles for Li||1 mAh cm-2 LiCoO2 cells.

12.
Environ Sci Pollut Res Int ; 30(48): 106355-106365, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37728676

RESUMO

This study considers the implementation of the "Broadband China" strategy as an exogenous policy shock and examines the impact of network infrastructure construction (NIC) on the low-carbon innovation (LCI) of enterprises and its underlying mechanisms by using a progressive difference-in-difference model based on the data of Chinese listed enterprises from 2009 to 2020. This study finds that NIC can improve the LCI of enterprises. After the elimination of the sample selection bias and selection of the urban slope as the exogenous instrumental variable, the conclusions remained robust. The results of the mechanism test show that upgrading the human capital level, reducing transaction costs, and alleviating financing constraints are the three important paths through which NIC can help enterprises improve their LCI level. The heterogeneity analysis determines that NIC has considerable comparative advantages for enterprises with executives who have a financial background and enterprises with high knowledge stock. In addition, LCI improvement can further enhance enterprise value. The research conclusions can broaden the microscopic research perspective of enterprise transformation and upgrading theory and provide reliable empirical evidence for China's low-carbon economic transformation.


Assuntos
Povo Asiático , População do Leste Asiático , Humanos , Carbono , China , Conhecimento
13.
Ying Yong Sheng Tai Xue Bao ; 34(1): 58-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799377

RESUMO

Plant residues can affect C:N:P of soil, microbial biomass, and extracellular enzyme, but the effects are still unclear. We conducted a field experiment in an alpine meadow on the eastern part of the Qinghai-Tibetan Plateau to explore the effects of removing aboveground plant or roots and adding plant residues on the C:N:P of soil, microbial biomass, and extracellular enzyme. The results showed that removing aboveground plant biomass significantly decreased soil C:N (the change was -23.7%, the same below) and C:P (-14.7%), microbial biomass C:P and N:P, while significantly increased microbial biomass C:N, and enzyme C:N:P compared with meadow without human disturbance. Removing all plant biomass (aboveground and roots) significantly reduced soil C:N (-11.6%), C:P (-24.0%), N:P (-23.3%) and microbial biomass C:N in comparison to removing aboveground plant, while significantly improved microbial biomass N:P and enzyme N:P. Adding plant residues after removing aboveground plant significantly increased microbial biomass C:N and C:P, enzyme C:N compared with removing aboveground plant, while significantly decreased enzyme N:P. Compared with removing all the plant, adding plant residues after removing whole plant significantly reduced soil C:N (-16.4%), microbial biomass C:P, N:P and enzyme N:P, while significantly increased enzyme C:N. Our results suggest that removal of plants could have a strong effect on C:N:P of soil, microbial biomass, and extracellular enzyme, and C:N:P of microbial biomass and that extracellular enzyme woule be more sensitive to plant residues. Roots could play a key role in stabilizing C:N:P of soil, microbial biomass, and extracellular enzyme under plant residues addition. Adding plant residues could be a suitable solution for restoring alpine meadows under the circumstance of intact roots, which was conducive to soil C storage, but might not be suitable for alpine meadows with serious root damage, which would increase soil CO2 emission.


Assuntos
Pradaria , Solo , Humanos , Biomassa , Tibet , Solo/química , China , Plantas
14.
Sci Total Environ ; 863: 160913, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36529393

RESUMO

Wetland soil denitrification removes excess inorganic nitrogen (N) and prevents eutrophication in aquatic ecosystems. Wetland plants have been considered the key factors determining the capacity of wetland soil denitrification to remove N pollutants in aquatic ecosystems. However, the influences of various plant communities on wetland soil denitrification remain unknown. In the present study, we measured variations in soil denitrification under different herbaceous plant communities including single Phragmites karka (PK), single Paspalum thunbergia (PT), single Zizania latifolia (ZL), a mixture of Paspalum thunbergia plus Phragmites karka (PTPK), a mixture of Paspalum thunbergia plus Zizania latifolia (PTZL), and bare soil (CK) in the Estuary of Nantiaoxi River, the largest tributary of Qingshan Lake in Hangzhou, China. The soil denitrification rate was significantly higher in the surface (0-10 cm) than the subsurface (10-20 cm) layer. Wetland plant growth increased the soil denitrification rate by significantly increasing the soil water content, nitrate concentration, and ln(nirS) + ln(nirK). A structural equation model (SEM) showed that wetland plants indirectly regulated soil denitrification by altering the aboveground and belowground plant biomass, nitrate concentration, abundances of denitrifying functional genes, and denitrification potential. There was no significant difference in soil denitrification rates among PT, PK and ZL. The soil denitrification rate was significantly lower in PTZL than PTPK. Two-plant communities did not necessarily enhance the denitrification rate compared to single planting, the former had a greater competitiveness on N uptake and consequently reduced the amount of nitrate available for denitrification. As PTPK had the highest denitrification rate, co-planting P. thunbergia and P. karka could effectively improve N removal efficiency and help mitigate eutrophication in adjacent aquatic ecosystems. The results of this investigation provide useful information guiding the selection of appropriate wetland herbaceous plant species for wetland construction and the removal of N pollutants in aquatic ecosystems.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Ecossistema , Nitratos , Desnitrificação , Plantas , Solo/química , Poaceae , Microbiologia do Solo , Nitrogênio
15.
Sci Total Environ ; 862: 161219, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584951

RESUMO

Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.


Assuntos
Purificação da Água , Áreas Alagadas , Estações do Ano , Lagoas , Poluição da Água/análise , Nitrogênio/análise , Fósforo/análise , Eliminação de Resíduos Líquidos
16.
Nat Commun ; 14(1): 2211, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072401

RESUMO

Elevating the charging cut-off voltage is one of the efficient approaches to boost the energy density of Li-ion batteries (LIBs). However, this method is limited by the occurrence of severe parasitic reactions at the electrolyte/electrode interfaces. Herein, to address this issue, we design a non-flammable fluorinated sulfonate electrolyte by multifunctional solvent molecule design, which enables the formation of an inorganic-rich cathode electrolyte interphase (CEI) on high-voltage cathodes and a hybrid organic/inorganic solid electrolyte interphase (SEI) on the graphite anode. The electrolyte, consisting of 1.9 M LiFSI in a 1:2 v/v mixture of 2,2,2-trifluoroethyl trifluoromethanesulfonate and 2,2,2-trifluoroethyl methanesulfonate, endows 4.55 V-charged graphite||LiCoO2 and 4.6 V-charged graphite||NCM811 batteries with capacity retentions of 89% over 5329 cycles and 85% over 2002 cycles, respectively, thus resulting in energy density increases of 33% and 16% compared to those charged to 4.3 V. This work demonstrates a practical strategy for upgrading the commercial LIBs.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35270711

RESUMO

To achieve carbon (C) neutrality and mitigate climate change, it is crucial to understand how converting natural forests to agricultural plantations influences soil organic C (SOC) mineralization. In this study, we investigated the impact of converting evergreen broadleaf forests (EBF) to extensively managed Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) plantations (MBP) in subtropical China on SOC mineralization rate; the concentrations of labile SOC fractions such as dissolved organic C (DOC), microbial biomass C (MBC), and readily oxidizable C (ROC); the activities of C-degrading enzymes (cellobiohydrolase and phenol oxidase); and the abundance of C-degrading enzyme-encoding genes (cbhI and lcc). Three paired soil samples were taken from the surface layer (0-20 cm) of adjacent EBF-MBP sites in Anji County, Zhejiang province. Results showed that converting EBF to MBP significantly increased the SOC mineralization rate as well as soil pH, MBC, cellobiohydrolase, and phenol oxidase activities, and cbhI gene abundance, but did not change other soil properties described above. In addition, structural equation modelling (SEM) showed that the conversion increased SOC mineralization rate through increasing soil pH, cbhI gene abundance, MBC, and cellobiohydrolase and phenol oxidase activities. Our novel finding that converting EBF to extensively managed MBP enhanced SOC mineralization via increasing the activities of C-degrading enzymes suggests that C-degrading enzymes were a key factor regulating SOC mineralization in the extensively managed subtropical bamboo plantations.


Assuntos
Calcinose , Solo , Carbono , Celulose 1,4-beta-Celobiosidase , Florestas , Monofenol Mono-Oxigenase , Poaceae , Solo/química
18.
Lab Chip ; 22(11): 2185-2191, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35543209

RESUMO

Engineering high-performance cathodes for high energy-density lithium-sulfur (Li-S) batteries is quite significant to achieve commercialization. Here, we develop a graphene oxide scaffold/sulfur composite-encapsulated microcapsule (GSM) for high-performance Li-S batteries, which is prepared through the co-flow focusing (CFF) approach. The GSM-based cathode displays a high capacity of 1004 mA h g-1 at 0.2C after cycling 200 times, a long-term cycling stability after 1000 cycles at 2C, and a good rate-performance. At temperatures of -5 °C and 45 °C, the electrochemical performance is also excellent. The computational calculations based on density functional theory (DFT) verify the high adsorption energies of the microcapsules towards polysulfides, suppressing the shuttle effect efficiently. It is expected that the GSM system developed based on the CFF method here and its high electrochemical performance will enable it to be applicable for preparing many other emerging energy-storage materials and secondary batteries.

19.
Bioresour Technol ; 344(Pt B): 126336, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785331

RESUMO

In this study, a radial basis function neural network (RBFNN) model was developed and implemented in a multi-objective optimization procedure to determine the optimal hydraulic loading rate (HLR), hydraulic retention time (HRT), and mass loading rates (MLR) for enhanced removal of nitrogen and phosphorus by an integrated surface flow treatment wetland-pond system treating drinking source water in Yancheng, China. Prior to modelling, the system's 6-year nitrogen and phosphorus removal efficiencies were found to trend downwards as effluent concentrations trended positively. Meanwhile, operating parameter interaction effects impacted final effluent quality. Thus, total nitrogen and total phosphorus removal were simulated by an RBFNN model with satisfactory R2 of 0.99 and 0.98 respectively. Optimal average HLR, HRT and MLR for 80% simultaneous removal efficiencies were subsequently determined to be 0.10860 ± 0.03 md-1, 30.43 ± 9.96 d and 306.416 ± 89.54 mgm-2d-1 respectively. The results highlight the feasibility of the RBFNN modelling based optimization procedure for treatment wetlands.


Assuntos
Purificação da Água , Áreas Alagadas , Redes Neurais de Computação , Nitrogênio , Fósforo , Lagoas , Eliminação de Resíduos Líquidos
20.
Sci Total Environ ; 850: 158032, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970464

RESUMO

Conversion of forestland to intensively managed agricultural land occurs worldwide and can increase soil nitrous oxide (N2O) emissions by altering the transformation processes of nitrogen (N) cycling related microbes and environmental conditions. However, little research has been conducted to assess the relationships between nitrifying and denitrifying functional genes and enzyme activities, the altered soil environment and N2O emissions under forest conversion in subtropical China. Here, we investigated the long-term (two decades) effect of converting natural forests to intensively managed tea (Camellia sinensis L.) plantations on soil potential N2O emissions, inorganic N concentrations, functional gene abundances of nitrifying and denitrifying bacteria, as well as nitrifying and denitrifying enzyme activities in subtropical China. The conversion significantly increased soil potential N2O emissions, which were regulated directly by increased denitrifying enzyme activity (52 %) and nirS + nirK gene abundance (38 %) as shown by structural equation modeling, and indirectly by AOB-amoA gene abundance and inorganic N concentration. Our results indicate that converting natural forests to tea plantations directly increases soil inorganic N concentration, resulting in increases in the abundance of soil nitrifying and denitrifying microorganisms and the associated N2O emissions. These findings are crucial for disentangling the factors that directly and indirectly affect soil potential N2O emissions respond to the conversion of forest to tea plantation.


Assuntos
Óxido Nitroso , Solo , Desnitrificação , Nitrogênio , Óxido Nitroso/análise , Microbiologia do Solo , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA