RESUMO
The synergistic effect between bimetallic catalysts has been confirmed as an effective method for activating persulfate (PMS). Therefore, we immobilized copper-cobalt on chitosan to prepare bimetallic carbon catalysts for PMS activation and degradation of reactive dyes. Experimental results demonstrate that the CuCo-CTs/PMS catalytic degradation system exhibits excellent degradation performance toward various types of reactive dyes (e.g., Ethyl violet, Chlortalidone, and Di chlorotriazine), with degradation rates reaching 90% within 30 min. CuCo-CTs exhibit high catalytic activity over a wide pH range of 3-11 at room temperature and under static conditions, degrading over 92% of RV5 within 60 min. ultraviolet-visible (UV-vis) spectroscopy and color changes in the dye solution confirm the effective degradation of RV5, with a degradation rate of 97.2% within 10 min. Additionally, CuCo-CTs demonstrate good stability and reusability, maintaining a degradation rate of 92.8% after eight cycles. Kinetic studies indicate that the degradation follows pseudo-first-order kinetics. Furthermore, based on the results of radical scavenging experiments, the catalytic degradation mechanism of the dye involves both radical and nonradical pathways, with 1O2 identified as the primary active species. This study provides insights and experimental evidence for the application of persulfate oxidation in the treatment of dyeing wastewater.
RESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality in the world. Growth and differentiation factor 15 (GDF15) has been proved to play an important role in regulating tumor progression. However, the influence of GDF15 on NSCLC remains unclear. OBJECTIVE: We aimed to investigate the regulatory role of GDF15 in NSCLC. METHODS: The correlation between GDF15 expression and prognosis, stage of NSCLC was examined with bioinformatics method. The cell proliferation was detected with CCK8 and EdU staining. Wound healing, Transwell, flow cytometry assays were used to measure cell migration, invasion, and apoptosis, respectively. RESULTS: High expression of GDF15 is correlated with worse survival and malignant progression of NSCLC. Knockdown of GDF15 restrained the proliferation, invasion, migration, but accelerated apoptosis of lung cancer cells through regulating PTEN/PI3K/AKT signaling pathway. sh-GDF15 suppressed epithelial mesenchymal transition (EMT) process and promoted the chemotherapy sensitivity of lung cancer cells. CONCLUSION: GDF15 plays an important role in NSCLC progression. GDF15 mediated PTEN/PI3K/AKT signaling pathway might be the potential therapeutic targets for the prevention and treatment of GDF15.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , PTEN Fosfo-Hidrolase/genéticaRESUMO
Objective: This study aimed to evaluate the associations between endoplasmic reticulum (ER) stress-related genes EIF2AK3/PERK, HSPA5/GRP78, and DDIT3/CHOP polymorphisms and the risk of lung cancer. Methods: Six single-nucleotide polymorphisms (SNPs) of EIF2AK3, HSPA5, and DDIT3 were genotyped in 620 cases and 620 controls using a MassARRAY platform. Results: The minor allele A of rs6750998 was a protective allele against the risk of lung cancer (p < 0.001), while the minor alleles of rs867529, rs391957, and rs697221 were all risk alleles that may lead to multiplied risk of the disease (rp rs867529 = 0.002; p rs391957 = 0.015; p rs697221 < 0.001). Moreover, the rs6750998-TA/AA genotypes were protective genotypes against the risk of lung cancer (p = 0.005); however, the rs867529-GC/CC, rs391957-CC, and rs697221-GA/AA genotypes were associated with elevated lung cancer risk (p rs867529 = 0.003, p rs391957 = 0.028, and p rs697221 = 0.0001). In addition, EIF2AK3-rs6750998 was associated with a decreased risk of lung cancer under dominant, recessive, and log-additive models (p < 0.05). By contrast, the EIF2AK3-rs867529 was correlated with an increased risk of the disease under dominant and log-additive models (p = 0.001). Moreover, HSPA5-rs391957 was related to an elevated risk of the disease under recessive and log-additive models (p < 0.02). DDIT3-rs697221 was identified to have a significant association with the risk of lung cancer under all three genetic models (p < 0.01). Conclusion: Our results provide new insights on the role of the ER stress-related genes EIF2AK3, HSPA5, and DDIT3 polymorphisms for lung cancer risk.
RESUMO
Hydrophytes are plants that grow in or on water. Their overgrowth adversely affects the ecosystem because of crowding out other aquatic organisms and polluting the environment with plant residue. In principle, cellulolytic bacteria can be used to degrade hydrophyte biomass. We here isolated and characterized four cellulolytic bacterial strains from Lake Donghu sediments (Wuhan, China) that are rich in organic matter and plant residues. The isolates (WDHS-01 to 04) represent Bacillus, Micromonospora and Streptomyces genera. The bacteria exhibited pronounced endoglucanase activities (from 0.022 to 0.064 U mL-1). They did not extensively degrade the emerged plant Canna indica L. However, in an Hydrilla verticillata (submerged plant) degradation medium, strain WDHS-02 exhibited a high degradation rate (54.91%), endoglucanase activity of 0.35 U mL-1 and the conversion rate of cellulose to reducing sugars of 7.15%. Correlation analysis revealed that bacterial endoglucanase activity was significantly correlated with the degradation rate, and acid detergent lignin, ash and cellulose content of the residual H. verticillata powder. In conclusion, the identified bacteria efficiently decomposed submerged plants without the need for acid-base pretreatment. They expand the set of known cellulolytic bacteria and can be used for natural degradation of submerged plants.
Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Plantas/microbiologia , Plantas/metabolismo , Microbiologia do SoloRESUMO
Antibiotics and antibiotic resistance genes (ARGs) in swine wastewater have an irreversible impact on the surrounding water and soil ecosystems. Herein, integrated vertical-flow constructed wetlands (IVCWs) were constructed to assess the effects of zeolite and plants on the removal of sulfonamides (SMs), tetracyclines (TCs), and related ARGs (tetW, tetO, tetM, sul I, sul II, and sul III) from digested swine wastewater. The microorganism community structure was also investigated. Results showed that IVCWs with a zeolite substrate and plant system (ZP) exhibited a favorable removal performance for N, antibiotics, and ARGs at 97.9%, 95.0%, and 95.1%, respectively. Moreover, zeolite systems showed higher adsorption of SMs, lower adsorption of TCs. The higher removal rate of antibiotics in ZP systems might be due to the enhanced microbial degradation with the enrichment of Pseudomonas, Acinetobacter, and Bacillus in zeolite. Furthermore, Arundo donax had limited impact on antibiotics removal and was not conducive to the removal of ARGs. The absolute abundances of sul(I), sul(II), sul(III), tet(M), and tet(O) were significantly positively correlated with the absolute abundance of 16S rDNA. However, no significant correlation was found between the concentration of antibiotics and the abundance of related ARGs in the effluent.