Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 590: 20-26, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34968780

RESUMO

Chondrosarcoma (CHS) is the second most common bone malignant tumor and currently has limited treatment options. We have recently demonstrated that thioredoxin interacting protein (TXNIP) plays a crucial role in the oncogenesis of bone sarcoma, yet its implication in CHS is underdetermined. In the present study, we first found that knockdown of TXNIP promotes the proliferation of CHS cell largely through increasing their glycolytic metabolism, which is well-known as Warburg effect for providing energy. Consistent with our previous report that YAP is fundamental for CHS cell growth, herein we revealed that YAP functioned as an upstream molecule of TXNIP, and that YAP negatively regulated TXNIP mRNA and protein expression both in vitro and in vivo. Mechanistically, although knockdown of YAP upregulated both the nuclear and cytoplasmic TXNIP expression, we did not observe any obvious interaction between YAP and TXNIP; instead, miRNA-524-5p was demonstrated to be required for YAP-regulated TXNIP expression and thus controlling CHS cell growth. Together, our study reveals that TXNIP is a tumor suppressor in terms of CHS, and that the YAP/miRNA-524-5p/TXNIP signaling axis may provide a novel clue for CHS targeted therapy.


Assuntos
Proteínas de Transporte/genética , Condrossarcoma/genética , Condrossarcoma/patologia , MicroRNAs/metabolismo , Proteínas de Sinalização YAP/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Glicólise/genética , Humanos , MicroRNAs/genética , Mutação/genética
2.
Differentiation ; 113: 38-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32403041

RESUMO

Thy-1 is a 25-37 kDa glycophosphatidylinositol (GPI)-anchored cell surface protein that was discovered more than 50 years ago. Recent findings have suggested that Thy-1 is expressed on thymocytes, mesenchymal stem cells (MSCs), cancer stem cells, hematopoietic stem cells, fibroblasts, myofibroblasts, endothelial cells, neuronal smooth muscle cells, and pan T cells. Thy-1 plays vital roles in cell migration, adhesion, differentiation, transdifferentiation, apoptosis, mechanotransduction, and cell division, which in turn are involved in tumor development, pulmonary fibrosis, neurite outgrowth, and T cell activation. Studies have increasingly indicated a significant role of Thy-1 in cell differentiation and regeneration. However, despite recent research, many questions remain regarding the roles of Thy-1 in cell differentiation and regeneration. This review aimed to summarize the roles of Thy-1 in cell differentiation and regeneration. Furthermore, since Thy-1 is an outer leaflet membrane protein anchored by GPI, we attempted to address how Thy-1 regulates intracellular pathways through cis and trans signals. Due to the complexity and mystery surrounding the issue, we also summarized the Thy-1-related pathways in different biological processes, and this might provide novel insights in the field of cell differentiation and regeneration.


Assuntos
Antígenos Thy-1/fisiologia , Animais , Diferenciação Celular , Humanos , Regeneração , Transdução de Sinais
3.
J Cell Physiol ; 235(4): 3894-3904, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31595984

RESUMO

Osteosarcoma (OS) is the most common bone tumor that occurs predominantly in children and teenagers. Although many genes, such as p53 and Rb1, have been shown to be mutated, deregulation of the canonical Wnt/ß-catenin signaling pathway is frequently observed in OS. We recently demonstrated that heat shock protein 90 (HSP90) is involved in the regulation of runt-related transcription factor 2 via the AKT/GSK-3ß/ß-catenin signaling pathway in OS. However, the precise role of T cell factors/lymphoid enhancer-binding factor (TCFs/LEF) family members, which are the major binding complex of ß-catenin, in OS is poorly understood. In the present study, we first demonstrated that TCF-1 is overexpressed in OS compared with other bone tumors. Knockdown of TCF-1 significantly induced cell cycle arrest, severe DNA damage, and subsequent caspase-3-dependent apoptosis. Interestingly, coexpression of HSP90 and TCF-1 was observed in OS, and mechanistically, we demonstrated that TCF-1 expression is regulated by HSP90 either through a ß-catenin-dependent mechanism or a direct degradation of the proteasome. We also found that overexpression of TCF-1 partially abolishes the apoptosis induced by HSP90 inhibition. Furthermore, we provided evidence that p53, but not miR-34a, plays a crucial role in the HSP90-regulated TCF-1 expression and subsequent apoptosis. Given the diverse combination regimens of HSP90 inhibition with some other treatments, we propose that the p53 status and the expression level of TCF-1 should be taken into consideration to enhance the therapeutic efficacy of HSP90 inhibition.


Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Proteínas de Choque Térmico HSP90/genética , Osteossarcoma/genética , Fator 1 de Transcrição de Linfócitos T/genética , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , Proteína Oncogênica v-akt/genética , Osteossarcoma/patologia , Fatores de Transcrição TCF/genética , Transcrição Gênica/genética , beta Catenina/genética
4.
J Cell Biochem ; 120(8): 13177-13186, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30887556

RESUMO

Type 2 diabetes mellitus (T2DM) is increasingly being recognized as an independent risk factor for the onset and progression of osteoarthritis (OA). Extensive studies have focused on the contribution of obesity (excessive mechanical stress), comorbidity frequently found in T2DM, to cartilage destruction during OA development. However, a little is known about how diabetes-related inflammation may affect the local cartilage in a diabetic objective. In the present study, we were able to establish a T2DM rat model using a combination of a low dose of streptozotocin with high-fat and high-sugar diet. Although the cartilage integrity was comparable between the control and T2DM groups, the expression of matrix metalloproteinases-13 (MMP-13) was significantly upregulated in T2DM, indicating the initiation of an early cascade of cartilage degeneration. In parallel, an obvious alteration of subchondral bone remodeling (inhibition of bone formation) was observed, as evidenced by the reduction of osterix-expressing positive cells. Moreover, we demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) in the serum and synovium of T2DM rats was elevated, accompanied by an increase of synovitis score. We also noticed that the number of F4/80-positive macrophage cells was significantly increased in the T2DM group. Mechanistically, the expression of ICAM-1 in fibroblast-like synoviocytes can be triggered by glucose and interleukin-1ß, which are the two important factors within the joint of T2DM. Given that MMP-13 expression was significantly upregulated in the T2DM cartilage, and that ICAM-1-mediated filtration of macrophage was associated with synovitis, we propose that ICAM-1 is essential for triggering a vicious cycle of inflammation within the joint, which together subsequently drivers the cartilage degradation.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Animais , Citocinas/metabolismo , Imuno-Histoquímica , Masculino , Osteoartrite/imunologia , Osteoartrite/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-X
5.
J Cell Biochem ; 119(1): 948-959, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28681940

RESUMO

Osteosarcoma (OS) is the most malignant primary bone tumor in children and adolescents with limited treatment options and poor prognosis. Recently, aberrant expression of Runx2 has been found in OS, thereby contributing to the development, and progression of OS. However, the upstream signaling molecules that regulate its expression in OS remain largely unknown. In the present study, we first confirmed that the inhibition of HSP90 with 17-AAG caused significant apoptosis of OS cells via a caspase-3-dependent mechanism, and that inhibition or knockdown of HSP90 by 17-AAG or siRNAs significantly suppressed mRNA and protein expression of Runx2. Furthermore, we provided evidence that Runx2 was transcriptionally regulated by HSP90 when using MG132 and CHX chase assay. We also demonstrated that ß-catenin was overexpressed in OS tissue, and that knockdown of ß-catenin induced pronounced apoptosis of OS cells in the presence or absence of 17-AAG. Interestingly, this phenomenon was accompanied with a significant reduction of Runx2 and Cyclin D1 expression, indicating an essential role of Runx2/Cyclin D1 in 17-AAG-induced cells apoptosis. Moreover, we demonstrated that the apoptosis of OS cells induced by 17-AAG did require the involvement of the AKT/GSK-3ß/ß-catenin signaling pathway by using pharmacological inhibitor GSK-3ß (LiCl) or siGSK-3ß. Our findings reveal a novel mechanism that Runx2 is transcriptionally regulated by HSP90 via the AKT/GSK-3ß/ß-catenin signaling pathway, and by which leads to apoptosis of OS cells.


Assuntos
Benzoquinonas/farmacologia , Neoplasias Ósseas/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas de Choque Térmico HSP90/metabolismo , Lactamas Macrocíclicas/farmacologia , Osteossarcoma/genética , Transdução de Sinais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Leupeptinas/farmacologia , Osteossarcoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , beta Catenina/metabolismo
6.
Biochim Biophys Acta ; 1863(2): 335-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658161

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is an important member of the protein arginine methyltransferase family that regulates many cellular processes through epigenetic control of target gene expression. Because of its overexpression in a number of human cancers and its essential role in cell proliferation, transformation, and cell cycle progression, PRMT5 has been recently proposed to function as an oncoprotein in cancer cells. However, how its expression is regulated in cancer cells remains largely unknown. We have previously demonstrated that the transcription of PRMT5 can be negatively regulated by the PKC/c-Fos signaling pathway through modulating the transcription factor NF-Y in prostate cancer cells. In the present study, we demonstrated that PRMT5 undergoes polyubiquitination, possibly through multiple lysine residues. We also identified carboxyl terminus of heat shock cognate 70-interacting protein (CHIP), an important chaperone-dependent E3 ubiquitin ligase that couples protein folding/refolding to protein degradation, as an interacting protein of PRMT5 via mass spectrometry. Their interaction was further verified by co-immuoprecipitation, GST pull-down, and bimolecular fluorescence complementation (BiFC) assay. In addition, we provided evidence that the CHIP/chaperone system is essential for the negative regulation of PRMT5 expression via K48-linked ubiquitin-dependent proteasomal degradation. Given that down-regulation of CHIP and overexpression of PRMT5 have been observed in several human cancers, our finding suggests that down-regulation of CHIP may be one of the mechanisms underlying PRMT5 overexpression in these cancers.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Células COS , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Células HEK293 , Humanos , Immunoblotting , Lactamas Macrocíclicas/farmacologia , Lisina/genética , Lisina/metabolismo , Modelos Biológicos , Mutação , Poliubiquitina/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Proteólise/efeitos dos fármacos , Interferência de RNA , Ubiquitina-Proteína Ligases/genética
7.
J Cell Biochem ; 118(12): 4575-4586, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28485543

RESUMO

Chondrosarcoma is the second most malignant bone tumor with poor prognosis and limited treatment options. Thus, development of more effective treatments has become urgent. Recently, natural compounds derived from medicinal plants have emerged as promising therapeutic options via targeting multiple key cellular molecules. Andrographolide (Andro) is such a compound, which has previously been shown to induce cell cycle arrest and apoptosis in several human cancers. However, the molecular mechanism through which Andro exerts its anti-cancer effect on chondrosarcoma remains to be elucidated. In the present study, we showed that Andro-induced G2/M cell cycle arrest of chondrosarcoma by fine-tuning the expressions of several cell cycle regulators such as p21, p27, and Cyclins, and that prolonged treatment of cells with Andro caused pronounced cell apoptosis. Remarkably, we found that SOX9 was highly expressed in poor-differentiated chondrosarcoma, and that knockdown of SOX9 suppressed chondrosarcoma cell growth. Further, our results showed that Andro dose-dependently down-regulated SOX9 expression in chondrosarcoma cells. Concomitantly, an inhibition of T cell factor 1 (TCF-1) mRNA expression and an enhancement of TCF-1 protein degradation by Andro were observed. In contrast, the expression and subcellular localization of ß-catenin were not altered upon the treatment of Andro, suggesting that ß-catenin might not function as the primary target of Andro. Additionally, we provided evidence that there was a mutual regulation between TCF-1 and SOX9 in chondrosarcoma cells. In conclusion, these results highlight the potential therapeutic effects of Andro in treatment of chondrosarcoma via targeting the TCF-1/SOX9 axis. J. Cell. Biochem. 118: 4575-4586, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Condrossarcoma/tratamento farmacológico , Diterpenos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Condrossarcoma/genética , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição SOX9/genética , Fator 1 de Transcrição de Linfócitos T/genética
8.
J Cell Biochem ; 118(8): 2182-2192, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28059436

RESUMO

Chondrosarcoma, the second-most frequent primary bone malignancy, is generally more resistant to conventional chemotherapy and radiotherapy. Therefore, the development of an effective adjuvant therapy is necessary. Recently, targeting the epigenetic regulator such as bromodomain and extraterminal domain (BET) proteins has achieved great success. For instance, the bromodomain inhibitor JQ1 has been shown to inhibit the growth of several cancer cells both in vitro and in vivo. Herein, we demonstrated that JQ1 significantly inhibited chondrosarcoma cell growth and colony formation. JQ1 also induced marked G1-phase cell cycle arrest coincided with the up-regulation of p21WAF1/CIP1 , p27Kip1 , and Cyclin D1 expression, and the down-regulation of Cyclin E2 expression. Moreover, JQ1 induced the premature senescence of SW 1353 cells, and that prolong treatment of JQ1 caused cell apoptosis. Mechanistically, the JQ1-induced cell growth inhibition was correlated with the suppression of c-Myc and Bcl-xL, which are the prime genes for cell cycle control and anti-apoptosis. Furthermore, we demonstrated that p21 negatively regulated the expression of c-Myc and Bcl-xL upon JQ1 treatment, and that the growth inhibition of SW 1353 and Hs 819.T cells and induction of p21 were predominantly regulated by the LATS1/YAP signaling but not through a p53-dependent manner. In conclusion, we disclosed a novel mechanism that JQ1 inhibits cell proliferation, induces cell senescence and apoptosis of chondrosarcoma cells through the regulation of the YAP/p21/c-Myc/Bcl-xL signaling axis. J. Cell. Biochem. 118: 2182-2192, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Azepinas/farmacologia , Condrossarcoma/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fosfoproteínas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Triazóis/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Immunoblotting , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição , Proteínas de Sinalização YAP
9.
Biochem Cell Biol ; 94(3): 256-64, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27219672

RESUMO

Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is a highly promising therapeutic agent for cancer treatment, owing to its ability to selectively target tumor cells for cell death while having little effect on most normal cells. However, recent research has found that many cancers, including non-small cell lung cancer (NSCLC), display resistance to TRAIL. Therefore, it is important to elucidate the molecular mechanisms governing the resistance of tumor cells to TRAIL treatment. In this study, we show that GSK3ß antagonized TRAIL-induced apoptosis in H1299 NSCLC cells, and determined that the PKCα isozyme is an upstream regulator of GSK3ß that phosphorylates and inactivates GSK3ß, thereby sensitizing cancer cells to TRAIL-induced apoptosis. Furthermore, we demonstrated that the anti-apoptotic effect of GSK3ß is mediated by the NF-κB pathway, whereas the tripartite motif 21 (TRIM21) was able to inhibit the activation of NF-κB by GSK3ß, and leads to the promotion of cell apoptosis. Taken together, our study further delineated the underpinning mechanism of resistance to TRAIL-induced apoptosis in H1299 cells, and provided new clues for sensitizing NSCLC cells to TRAIL therapy.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , NF-kappa B/metabolismo , Proteína Quinase C-alfa/metabolismo , Ribonucleoproteínas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação , Proteína Quinase C-alfa/genética , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
10.
Biochim Biophys Acta ; 1839(11): 1330-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25281873

RESUMO

Protein arginine methyltransferase 5 (PRMT5) symmetrically methylates arginine residues of histones and non-histone protein substrates and regulates a variety of cellular processes through epigenetic control of target gene expression or post-translational modification of signaling molecules. Recent evidence suggests that PRMT5 may function as an oncogene and its overexpression contributes to the development and progression of several human cancers. However, the mechanism underlying the regulation of PRMT5 expression in cancer cells remains largely unknown. In the present study, we have mapped the proximal promoter of PRMT5 to the -240bp region and identified nuclear transcription factor Y (NF-Y) as a critical transcription factor that binds to the two inverted CCAAT boxes and regulates PRMT5 expression in multiple cancer cell lines. Further, we present evidence that loss of PRMT5 is responsible for cell growth inhibition induced by knockdown of NF-YA, a subunit of NF-Y that forms a heterotrimeric complex with NF-YB and NF-YC for function. Significantly, we have found that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) in LNCaP prostate cancer cells down-regulates the expression of NF-YA and PRMT5 at the transcription level in a c-Fos-dependent manner. Given that down-regulation of several PKC isozymes is implicated in the development and progression of several human cancers, our findings suggest that the PKC-c-Fos-NF-Y signaling pathway may be responsible for PRMT5 overexpression in a subset of human cancer patients.


Assuntos
Fator de Ligação a CCAAT/fisiologia , Proliferação de Células/genética , Neoplasias da Próstata/genética , Proteína Quinase C/fisiologia , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-fos/fisiologia , Ativação Transcricional , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais
11.
Adv Biol (Weinh) ; 8(3): e2300510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38085135

RESUMO

Brown adipose tissue undergoes rapid postnatal development to mature and plays a crucial role in thermoregulation and energy expenditure, which protects against cold and obesity. Herein, it is shown that the expression of Trim21 mRNA level of interscapular brown adipose tissue elevates after birth, and peaks at P14 (postnatal day 14). Trim21 depletion severely impairs the maturation of interscapular brown adipose tissue, decreases the expression of a series of thermogenic genes, and reduces energy expenditure. Consistently, the loss of Trim21 also leads to a suppression of white adipose tissue "browning", in response to cold exposure and a ß-adrenergic agonist, CL316,243. In addition, Trim21-/- mice are more prone to high-fat diet-induced obesity compared with the control littermates. Taken together, the study for the first time reveals a critical role of Trim21 in regulating iBAT postnatal development and thermogenesis.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/genética , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética
12.
Adv Sci (Weinh) ; 11(5): e2304617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044289

RESUMO

The interplay between immune cells/macrophages and fibroblast-like synoviocytes (FLSs) plays a pivotal role in initiating synovitis; however, their involvement in metabolic disorders, including diabetic osteoarthritis (DOA), is largely unknown. In this study, single-cell RNA sequencing (scRNA-seq) is employed to investigate the synovial cell composition of DOA. A significant enrichment of activated macrophages within eight distinct synovial cell clusters is found in DOA synovium. Moreover, it is demonstrated that increased glycolysis in FLSs is a key driver for DOA patients' synovial macrophage infiltration and polarization. In addition, the yes-associated protein 1 (YAP1)/thioredoxin-interacting protein (TXNIP) signaling axis is demonstrated to play a crucial role in regulating glucose transporter 1 (GLUT1)-dependent glycolysis in FLSs, thereby controlling the expression of a series of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) which may subsequently fine-tune the infiltration of M1-polarized synovial macrophages in DOA patients and db/db diabetic OA mice. For treatment, M1 macrophage membrane-camouflaged Verteporfin (Vt)-loaded PLGA nanoparticles (MVPs) are developed to ameliorate DOA progression by regulating the YAP1/TXNIP signaling axis, thus suppressing the synovial glycolysis and the infiltration of M1-polarized macrophages. The results provide several novel insights into the pathogenesis of DOA and offer a promising treatment approach for DOA.


Assuntos
Diabetes Mellitus , Osteoartrite , Sinoviócitos , Humanos , Camundongos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Osteoartrite/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diabetes Mellitus/metabolismo , Fibroblastos/metabolismo , Glicólise
13.
Biomaterials ; 306: 122483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330742

RESUMO

Bromodomain-containing protein 4 (BRD4) is the most well-studied BET protein that is important for the innate immune response. We recently revealed that targeting BRD4 triggers apoptosis in tumor-associated macrophages, but its role in synovial macrophages and joint inflammation is largely unknown. Herein, we demonstrated that BRD4 was highly expressed in the iNOS-positive M1 macrophages in the human and mouse osteoarthritis (OA) synovium, and conditional knockout of BRD4 in the myeloid lineage using Lyz2-cre; BRD4flox/flox mice significantly abolished anterior cruciate ligament transection (ACLT)-induced M1 macrophage accumulation and synovial inflammation. Accordingly, we successfully constructed apoptotic body-inspired phosphatidylserine-containing nanoliposomes (PSLs) loaded with the BRD4 inhibitor JQ1 to regulate inflammatory macrophages. JQ1-loaded PSLs (JQ1@PSLs) exhibited a higher cellular uptake by macrophages than fibroblast-like synoviocytes (FLSs) in vitro and in vivo, as well as the reduction in proinflammatory M1 macrophage polarization. Intra-articular injections of JQ1@PSLs showed prolonged retention within the joint, and remarkably reduced synovial inflammation and joint pain via suppressing M1 polarization accompanied by reduced TRPA1 expression by targeted inhibition of BRD4 in the macrophages, thus attenuating cartilage degradation during OA development. The results show that BRD4-inhibiting JQ1@PSLs can targeted-modulate macrophage polarization, which opens a new avenue for efficient OA therapy via a "Trojan horse".


Assuntos
Osteoartrite , Fatores de Transcrição , Animais , Humanos , Camundongos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Fatores de Transcrição/metabolismo
14.
Biomater Adv ; 149: 213413, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37027967

RESUMO

Osteophyte is an outgrowth of cartilage formed at the margins of the affected joint through endochondral ossification-like processes, and is one of the most common radiographic features of osteoarthritis (OA) that has been used to define the stage of disease. Osteophyte has been regarded to adapt the joint to the altered biomechanics of OA patients, limits joint movement and represent a source of joint pain, however, the mechanism of osteophyte formation, the morphology characteristics and biomechanical properties of osteophyte cells are remained unclear. In the present study, we isolated osteophyte cells and chondrocytes from late-stage OA patients who underwent total knee replacement surgeries, by applying Atomic Force Microscopy (AFM), we identified osteophyte cells were in irregular shape with dendrites, shrunk cell body, smooth surface and high elastic modulus (23.3 ± 5.4 kPa) when compared with chondrocytes (6.5 ± 1.8 kPa). In addition, osteophyte cells showed higher proliferation ability and colony formation capacity than chondrocytes. Mechanistically, we identified YAP1, the core transcriptional factor of Hippo signaling pathway, was highly expressed in osteophyte cell both at protein and RNA levels. Inactivation of Hippo/YAP1 signaling pathway by Verteporfin is sufficient to inhibit osteophyte cell proliferation in vitro and attenuate osteophyte formation in vivo. In conclusion, the morphology characteristic and biomechanical property of osteophyte cells at single cell level are quite different from chondrocytes, although we could not exclude other regulatory mechanisms, our findings suggested that Hippo/YAP1 is of great importance for osteophyte formation.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Animais , Camundongos , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteófito/tratamento farmacológico , Osteófito/metabolismo , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Verteporfina/metabolismo
15.
Adv Healthc Mater ; 12(21): e2300075, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097067

RESUMO

Chitin is a popular hemostatic material, but there are still many deficiencies in its ability to effectively stop bleeding, prevent infection, and fit wounds. Herein, AgNP@zeolite/chitin/bamboo (AgZ-CB) composite sponges with shape recovery are prepared to minimize blood loss, kill bacteria, and promote wound healing. Notably, the bamboo powder is used for the first time to remarkably enhance the softness of the composite sponge (volumetric expansion ratio >5). The fabricated AgZ-CB sponge exhibits an excellent killing effect (≈100% bactericidal rate) against both Escherichia coli and Staphylococcus aureus and activates internal and external coagulation pathways to accelerate hemostasis without causing thermal damage (≈5 °C temperature difference). Moreover, the AgZ-CB sponge shows less blood loss (26 mg) and a shorter time to hemostasis (42 s) than the commercial polyvinyl formal sponge (84 mg and 76 s) in the full-thickness liver injury model. The in vivo wound healing and biodegradation experiment indicate that AgZ-CB with excellent biocompatibility can close wounds efficiently. Overall, the AgZ-CB sponge has great potential in combating a series of obstacles in wound healing.


Assuntos
Queimaduras , Hemostáticos , Zeolitas , Humanos , Hemostáticos/farmacologia , Zeolitas/farmacologia , Quitina/farmacologia , Temperatura Alta , Hemostasia , Cicatrização , Hemorragia/tratamento farmacológico , Hemorragia/prevenção & controle , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37453381

RESUMO

Osteoarthritis (OA) is the most common joint disease and the leading cause of disability in elderly individuals. Despite rapid advances in imaging techniques, early OA diagnosis remains a clinical challenge. In the present study, the feasibility of early OA diagnosis was explored via near-infrared spectroscopy (NIRS) combined with aquaphotomics. Synovial fluid samples from 65 cases of OA categorized as mild, moderate, and severe according to theKellgrenandLawrence classification criteria were analyzed via NIRS. The 1st overtone of water (1300-1600 nm) was considered as the research object for an aquaphotomics model, and aquagrams of the mild, moderate, and severe OA cases were generated using 12 water absorption patterns for early OA diagnosis.The aquaphotomics results exhibited clear differences in the region of 1300-1500 nm, and the number of hydrogen bonds of different water species (1412,1424, 1482, and 1496 nm) evidently correlated with OA occurrence and development. With OA progression, the absorption intensity of water molecules without hydrogen bonds (1412 nm/1424 nm) became stronger, while the absorption intensity of water molecules with four hydrogen bonds (1482 nm/1496 nm) decreased.These results together reveal that the established accurate and rapid early OA diagnosis model based on NIRS combined with aquaphotomics is effective and feasible, and that the number of hydrogen bonds can be used as a biomarker for early OA diagnosis.


Assuntos
Osteoartrite , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Idoso , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fenômenos Químicos , Ligação de Hidrogênio , Água/química
17.
Bone Res ; 11(1): 56, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884520

RESUMO

Despite the diverse roles of tripartite motif (Trim)-containing proteins in the regulation of autophagy, the innate immune response, and cell differentiation, their roles in skeletal diseases are largely unknown. We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast (OB) differentiation in osteosarcoma. However, how Trim21 contributes to skeletal degenerative disorders, including osteoporosis, remains unknown. First, human and mouse bone specimens were evaluated, and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients. Next, we found that global knockout of the Trim21 gene (KO, Trim21-/-) resulted in higher bone mass compared to that of the control littermates. We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and elevating the activity of OBs; moreover, Trim21 depletion suppressed osteoclast (OC) formation of RAW264.7 cells. In addition, the differentiation of OCs from bone marrow-derived macrophages (BMMs) isolated from Trim21-/- and Ctsk-cre; Trim21f/f mice was largely compromised compared to that of the littermate control mice. Mechanistically, YAP1/ß-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs. More importantly, the loss of Trim21 prevented ovariectomy (OVX)- and lipopolysaccharide (LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling. Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption, thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.


Assuntos
Osteogênese , Osteoporose , Animais , Feminino , Humanos , Camundongos , beta Catenina/genética , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Osteogênese/genética , Osteoporose/genética
18.
Inflamm Res ; 61(5): 503-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22273691

RESUMO

OBJECTIVE: Osteoarthritis is a degenerative joint disease, in which matrix metalloproteinase (MMP)-13 plays an important role. This study aimed to investigate miRNA-140-mediated negative regulation of MMP-13 expression in interleukin-1ß (IL-1ß)-stimulated human cartilage cells. METHODS: The human cartilage cell line C28/I2 was cultured in the presence of IL-1ß to mimic an osteoarthritic environment. Expression of miRNA-140 and MMP-13 was analyzed after 48 h by real-time RT-PCR and western blot analyses. MiRNA-140 mediated regulation of MMP-13 expression was analyzed by luciferase reporter assays and anti-miRNA-140 oligonucleotide transfection. Furthermore, miRNA-140 and MMP-13 expression was analyzed following DHMEQ treatment. RESULTS: Expression of miRNA-140 and MMP-13 was elevated in IL-1ß-stimulated C28/I2 cells. Bioinformatic prediction showed that the 3'-UTR of MMP-13 mRNA contained a potential binding miRNA-140 site and luciferase mRNA fused with 3'-UTR of MMP-13 mRNA was shown to be repressed by miRNA-140 in reporter assays. Expression of MMP-13 was elevated in IL-1ß-stimulated C28/I2 cells following anti-miRNA-140 oligonucleotide transfection. NF-κB activity was inhibited in DHMEQ treated IL-1ß-stimulated C28/I2 cells and was associated with decreased miRNA-140 and MMP-13 expression. CONCLUSION: Expression of miRNA-140 and MMP-13 was induced by IL-1ß. Expression of miRNA-140 inhibited MMP-13 in C28/I2 cells. Expression of miRNA-140 and MMP-13 was shown to be NF-κB-dependent.


Assuntos
Condrócitos/enzimologia , Interleucina-1beta/farmacologia , Metaloproteinase 13 da Matriz/fisiologia , MicroRNAs/fisiologia , Osteoartrite/enzimologia , Cartilagem/enzimologia , Células Cultivadas , Retroalimentação Fisiológica , Humanos , Metaloproteinase 13 da Matriz/análise , Metaloproteinase 13 da Matriz/genética , MicroRNAs/análise , NF-kappa B/fisiologia , Osteoartrite/etiologia
19.
Carbohydr Polym ; 296: 119924, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088022

RESUMO

The development of shape-memory sponge dressings with functions, such as hemostasis, antibacterial activity, and wound healing, is of great significance in clinical applications. Herein, a novel AuNPs@corn stalk/chitin composite sponge (CCAu) was fabricated by crosslinking the chitin matrix with corn stalk-embedded gold nanoparticles (AuNPs). The addition of AuNPs@corn stalk gave the porous chitin sponge shape-recovery ability with improved softness, porosity, and water absorption. Correspondingly, the composite sponge showed better hemostatic effects than commercial PVF sponges. The photothermal effect of AuNPs endowed the composite sponge with excellent antibacterial activity. In addition, the wound treated with composite sponge containing antioxidant AuNPs exhibited a significantly faster wound healing rate (reaching 41.6 % on day 3) than the CH (33.2 %) and control (12.6 %) group through promoting cell migration, angiogenesis and collagen deposition. Therefore, the multifunctional composite sponge with great biocompatibility in this work provides a potential strategy for wound healing.


Assuntos
Hemostáticos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Bandagens/microbiologia , Quitina/farmacologia , Ouro/farmacologia , Hemostasia , Hemostáticos/farmacologia , Cicatrização , Zea mays
20.
Adv Sci (Weinh) ; 9(29): e2202039, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988145

RESUMO

Recent evidence has indicated that overexpression of the epigenetic reader bromodomain-containing protein 4 (BRD4) contributes to a poor prognosis of lung cancers, and the suppression of its expression promotes cell apoptosis and leads to tumor shrinkage. Proteolysis targeting chimera (PROTAC) has recently emerged as a promising therapeutic strategy with the capability to precisely degrade targeted proteins. Herein, a novel style of versatile nano-PROTAC (CREATE (CRV-LLC membrane/DS-PLGA/dBET6)) is developed, which is constructed by using a pH/GSH (glutathione)-responsive polymer (disulfide bond-linked poly(lactic-co-glycolic acid), DS-PLGA) to load BRD4-targeted PROTAC (dBET6), followed by the camouflage with engineered lung cancer cell membranes with dual targeting capability. Notably, CREATE remarkably confers simultaneous targeting ability to lung cancer cells and tumor-associated macrophages (TAMs). The pH/GSH-responsive design improves the release of dBET6 payload from nanoparticles to induce pronounced apoptosis of both cells, which synergistically inhibits tumor growth in both subcutaneous and orthotopic tumor-bearing mouse model. Furthermore, the efficient tumor inhibition is due to the direct elimination of lung cancer cells and TAMs, which remodels the tumor microenvironment. Taken together, the results elucidate the construction of a versatile nano-PROTAC enables to eliminate both lung cancer cells and TAMs, which opens a new avenue for efficient lung cancer therapy via PROTAC.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Animais , Camundongos , Dissulfetos/metabolismo , Epigênese Genética , Glutationa/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Polímeros , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA