Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612461

RESUMO

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.


Assuntos
Glycine max , Fixação de Nitrogênio , Glycine max/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Sementes/genética , Fósforo , Nitrogênio
2.
Am J Transl Res ; 16(7): 3248-3258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114729

RESUMO

OBJECTIVES: To investigate the role of C-terminal tensin-like (CTEN) in mediating chemotherapy resistance via epithelial-mesenchymal transition (EMT) in bladder cancer (BC) cells, through the regulation of transforming growth factor-ß1 (TGF-ß1) expression. METHODS: Lentiviral vectors were used to create CTEN overexpression and knockdown constructs, which were then introduced into paclitaxel-resistant BC cell lines. The effects of CTEN manipulation on cell proliferation and drug sensitivity was assessed using the CCK-8 assay, and apoptosis was evaluated by flow cytometry. The expression levels of CTEN, TGF-ß1, and EMT markers were quantified by RT-qPCR and Western blot analysis. The interaction between CTEN and TGF-ß1 and its effect on TGF-ß1 methylation were studied using bisulfite sequencing PCR and co-immunoprecipitation. RESULTS: Overexpression of CTEN in BC cells was associated with decreased paclitaxel efficacy, reduced apoptosis, and elevated levels of TGF-ß1 and EMT-related proteins. CTEN was found to bind TGF-ß1, inhibiting its methylation and thereby promoting TGF-ß1 upregulation. This increase in TGF-ß1 expression facilitated the EMT process and enhanced drug resistance in BC cells. CONCLUSIONS: The induction of TGF-ß1 expression by CTEN promotes EMT and increases chemotherapy resistance in BC cells. Targeting CTEN or the EMT pathway could improve chemosensitivity in treatment-resistant BC, suggesting a novel therapeutic strategy to enhance chemotherapy effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA