RESUMO
Myopia accounts for a significant proportion of visual lesions worldwide and has the potential to progress toward pathological myopia. This study aims to reveal the difference in protein content in aqueous humor between high myopic and nonhigh myopic patients, as well as better understand the dysregulation of proteins in myopic eyes. Aqueous humor was collected for liquid chromatograph mass spectrometer (LC/MS) analysis from 30 individual eyes that underwent phacoemulsification and intraocular lens (IOL) implantation. Results showed that a total of 190 differentially expressed proteins were identified, which revealed their involvement in cell metabolism, immune and inflammatory response, and system and anatomical structure. Further analysis focused on 15 intensively interacted hub proteins, encompassing functions related to complement cascades, lipoprotein metabolism, and fibrin biological function. Subsequent validations demonstrated elevated levels of APOE (apolipoprotein E), C3 (complement 3), and AHSG (α-2-HS-glycoprotein) in the high myopia group (31 eyes of cataracts and 45 eyes of high myopia with cataracts). AHSG had a significant positive correlation with axial length in high myopic patients, with good efficacy in distinguishing between myopic and nonmyopic groups. AHSG may be a potential indicator of the pathological severity and participator in the pathological progress of high myopia. This study depicted differential expression characteristics of aqueous humor in patients with high myopia and provided optional information for further experimental research on exploring the molecular mechanisms and potential therapeutic targets for high myopia. Data are available via ProteomeXchange with the identifier PXD047584.
Assuntos
Extração de Catarata , Catarata , Miopia , Humanos , Humor Aquoso , ProteômicaRESUMO
Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1ß (Il-1ß) in diabetic retinas. Tgf-ß3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-ß3 protein level via the AKT pathway. The protective effect of TGF-ß3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-ß3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-ß3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.
Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Degeneração Retiniana , Humanos , Ratos , Animais , Degeneração Retiniana/patologia , Células Ependimogliais/metabolismo , Estreptozocina/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta3/efeitos adversos , Fator de Crescimento Transformador beta3/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Gliose/patologia , Retina/metabolismo , Retinopatia Diabética/patologia , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Indocyanine green (ICG) is widely used to stain the epiretinal membranes and internal limiting membranes during the pars plana vitrectomy (PPV). This study aims to evaluate the effect of ICG on rat retinas and various retinal cell lines, including ARPE-19 cells, rMC-1 cells, BV2 cells, HRMECs and R28 cells. METHODS: ICG solutions were prepared and diluted with glucose solution (GS) according to the standard clinical protocols. The retinal cell lines, including ARPE-19 cells, rMC-1 cells, BV2 cells, HRMECs and R28 cells, were treated with the following solutions: normal glucose (NG, 5 mM), GS-1 (92.5 mM glucose), GS-2 (185.02 mM glucose), ICG-1 (92.5 mM glucose + 0.43 mM ICG), or ICG-2 (185.02 mM glucose + 0.86 mM ICG) for durations of 15 or 30 min. In vivo, the right eyes of the rats were intravitreally injected with ICG-1 or ICG-2 (2 µL), while the left eyes were intravitreally injected with GS-1 or GS-2, served as the osmotic controls, for 30 min or 60 min. The rats intravitreally injected with an equivalent volume of NG or 1x phosphate-buffered saline (1x PBS) were served as the normal control or vehicle control. The cell viability was measured with the Cell Counting Kit-8 (CCK-8), while the cell death in retinal cryosections was detected with the TUNEL assay. RESULTS: The viabilities of the different retinal cell lines involved in this study were significantly reduced by both ICG-1 and ICG-2 treatments at both time points, with ICG-2 resulting in lower cell viability compared to the NG group and the osmotic control group. Additionally, GS-2 treatment also exhibited a decrease in retinal cell viabilities in vitro. To further confirm these results, intravitreal injection of ICG or GS induced more apoptotic cell death in rat retinas as evidenced by the TUNEL assay. CONCLUSIONS: The exposure of ICG or its solvent leads to an augmented retinal cell death, which is directly proportional to the concentration and duration of exposure, both in vivo and in vitro. Caution should be exercised during vitrectomy procedures involving ICG administration during clinical practice. It is recommended to advocate for lower concentrations of ICG with reduced exposure time during ocular surgeries.
RESUMO
BACKGROUND: Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS: In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a ß-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFß1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS: The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of ß-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active ß-catenin labeling. In vitro, Wnt5a/ROR1, active ß-catenin, and some other Wnt signaling molecules were upregulated in the TGFß1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active ß-catenin, as well as the EMT in TGFß1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS: Our study reveals a reciprocal activation between Wnt5a and ß-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.
Assuntos
Degeneração Macular , Sulfonamidas , beta Catenina , Humanos , Masculino , Animais , Camundongos , beta Catenina/metabolismo , Proteína Wnt-5a , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina/metabolismo , Transição Epitelial-Mesenquimal , Degeneração Macular/metabolismo , Fibrose , RNA Interferente Pequeno/metabolismoRESUMO
BACKGROUND: Fibrotic scar is a severe side effect of trabeculectomy, resulting in unsatisfactory outcomes for glaucoma surgery. Accumulating evidence showed human Tenon's fibroblasts (HTFs) play an important role in fibrosis formation. We previously reported that the aqueous level of secreted protein acidic and rich in cysteine (SPARC) was higher in the patients with primary angle closure glaucoma, which was associated with the failure of trabeculectomy. In this study, the potential effect and mechanism of SPARC in promoting fibrosis were explored by using HTFs. METHODS: HTFs were employed in this study and examined under a phase-contrast microscope. Cell viability was determined by CCK-8. The expressions of SPARC-YAP/TAZ signaling and the fibrosis-related markers were examined with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence, subcellular fractionation was conducted to further determined the variation of YAP and phosphorylated YAP. The differential gene expressions were analyzed with RNA sequencing (RNAseq), followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS: Exogenous SPARC induced HTFs-myofibroblast transformation, as evidenced by the increased expression of α-SMA, collagen I and fibronectin in both protein and mRNA levels. SPARC knockdown decreased the expressions of the above genes in TGF-ß2-treated HTFs. KEGG analysis showed that the Hippo signaling pathway was mostly enriched. SPARC treatment increased the expressions of YAP, TAZ, CTGF and CYR61 as well as enhanced YAP translocation from cytoplasm to nucleus, and decreased the phosphorylation of YAP and LAST1/2, which was reversed by SPARC knockdown. Knockdown of YAP1 decreased the fibrosis-related markers, such as α-SMA, collagen I and Fibronectin, in SPARC-treated HTFs. CONCLUSIONS: SPARC induced HTFs-myofibroblast transformation via activating YAP/TAZ signaling. Targeting SPARC-YAP/TAZ axis in HTFs might provide a novel strategy for inhibiting fibrosis formation after trabeculectomy.
Assuntos
Fibronectinas , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Fibronectinas/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Fibrose , Células CultivadasRESUMO
PURPOSE: To investigate the effectiveness of two regimens of ranibizumab-assisted pars plana vitrectomy in the treatment of patients with proliferative diabetic retinopathy. METHODS: This is a prospective, 6-month, randomized controlled trial. Eighty patients with 87 eyes requiring pars plana vitrectomy treatment for proliferative diabetic retinopathy were included and randomly divided into a 1.0-mg injection group and a 0.5-mg injection group. The ranibizumab was delivered intraoperatively, at the close of surgery. The vitreous hemorrhage grade, best-corrected visual acuity, central macular thickness, and safety data were assessed to Month 6. RESULTS: The 1.0-mg injection group had a milder grade and a lower reoccurrence rate of early postoperatively vitreous hemorrhage than the 0.5-mg injection group (35.0% and 63.4%, respectively, P = 0.0195). The mean best-corrected visual acuity of two groups was significantly improved from baseline to 6 months after surgery, 1.60 ± 0.72 Logarithm of the Minimum Angle of Resolution (LogMAR) (<20/200) to 0.47 ± 0.49 LogMAR (20/59) for the 1.0-mg injection group and 1.51 ± 0.69 LogMAR (<20/200) to 0.50 ± 0.31 LogMAR (20/63) for the 0.5-mg injection group, but there was no significant difference between the two groups ( P = 0.74). There was no significant difference in the mean decrease in central macular thickness and probability of postoperative adverse events between the two groups. CONCLUSION: Intravitreal injection of 1.0 mg of ranibizumab after pars plana vitrectomy compared with the recommended dose of 0.5 mg significantly reduced the recurrence and severity of early postoperative vitreous hemorrhage in patients with proliferative diabetic retinopathy. It also contributed to the early recovery of visual acuity after surgery and did not increase postoperative adverse events.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/tratamento farmacológico , Injeções Intravítreas , Estudos Prospectivos , Ranibizumab/efeitos adversos , Ranibizumab/uso terapêutico , Resultado do Tratamento , Vitrectomia/efeitos adversos , Hemorragia Vítrea/cirurgiaRESUMO
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-ß (TGF-ß)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Assuntos
Epitélio Pigmentado da Retina , Degeneração Macular Exsudativa , Humanos , Idoso , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/uso terapêutico , Transição Epitelial-Mesenquimal , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/patologia , FibroseRESUMO
Retinal Müller glial dysfunction and intracellular edema are important mechanisms leading to diabetic macular edema (DME). Aquaporin 11 (AQP11) is primarily expressed in Müller glia with unclear functions. This study aims to explore the role of AQP11 in the pathogenesis of intracellular edema of Müller glia in diabetic retinopathy (DR). Here, we found that AQP11 expression, primarily located at the endfeet of Müller glia, was down-regulated with diabetes progression, accompanied by intracellular edema, which was alleviated by intravitreal injection of lentivirus-mediated AQP11 overexpression. Similarly, intracellular edema of hypoxia-treated rat Müller cell line (rMC-1) was aggravated by AQP11 inhibition, while attenuated by AQP11 overexpression, accompanied by enhanced function in glutamate metabolism and reduced cell death. The down-regulation of AQP11 was also verified in the Müller glia from the epiretinal membranes (ERMs) of proliferative DR (PDR) patients. Mechanistically, down-regulation of AQP11 in DR was mediated by the HIF-1α-dependent and independent miRNA-AQP11 axis. Overall, we deciphered the AQP11 down-regulation, mediated by miRNA-AQP11 axis, resulted in Müller drainage dysfunction and subsequent intracellular edema in DR, which was partially reversed by AQP11 overexpression. Our findings propose a novel mechanism for the pathogenesis of DME, thus targeting AQP11 regulation provides a new therapeutic strategy for DME.
Assuntos
Aquaporinas , Diabetes Mellitus , Retinopatia Diabética , Edema Macular , MicroRNAs , Ratos , Animais , Retinopatia Diabética/patologia , MicroRNAs/genética , Regulação para Baixo , Aquaporinas/metabolismoRESUMO
The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin-induced diabetic rats, glyoxal-treated R28 cells and hypoxia-treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba-1, TSPO, NF-κB, Nrf2 and inflammation-related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal-treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia-treated microglia, which was largely dampened by FKN. The NF-κB and Nrf2 expressions and intracellular ROS were up-regulated in hypoxia-treated microglia compared with that in normoxia control, and FKN significantly inhibited NF-κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF-κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation-related cytokines and ROS, and protect the retina from diabetes insult.
Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacologia , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Microglia , Doenças Neuroinflamatórias , RatosRESUMO
Microglial activation has been studied extensively in diabetic retinopathy. We have previously detected activation and migration of microglia in 8-week-old diabetic rat retinas. It is widely acknowledged that microglia-mediated inflammation contributes to the progression of diabetic retinopathy. However, existing cell models do not explore the role of activated microglia in vitro. In this study, microglia were subject to various conditions mimicking diabetic retinopathy, including high glucose, glyoxal, and hypoxia. Under high glucose or glyoxal treatment, microglia demonstrated only partially functional changes, while under hypoxia, microglia became fully activated showing enlarged cell bodies, enhanced migration and phagocytosis as well as increased production of pro-inflammatory factors such as cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS). The data indicate that hypoxia-treated microglia is an optimal in vitro model for exploration of microglia activation in diabetic retinopathy.
Assuntos
Movimento Celular , Retinopatia Diabética/patologia , Microglia/patologia , Fagocitose , Retina/patologia , Animais , Hipóxia Celular , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Glucose/toxicidade , Glioxal/toxicidade , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/efeitos dos fármacos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismoRESUMO
PURPOSE: Increased permeability of retinal capillary endothelial cells is a key feature in the progression of diabetic retinopathy (DR). Precisely why and how diabetes causes dysfunction in retinal capillary endothelial cells is not well understood, making it challenging to explore more advanced therapeutics. METHODS: Cell proliferation was assessed by the Cell Counting Kit-8 assay. Ferroptosis was evaluated by measuring lipid reactive oxygen species levels by flow cytometry and determining malondialdehyde, superoxide dismutase, and glutathione peroxidase levels through biochemical assays. Western blot analysis and quantitative PCR were respectively used to check the expression of proteins and RNAs. Co-immunoprecipitation assays were used to confirm the interaction between TRIM46 and GPX4. RESULTS: High glucose (HG, 25 mM glucose) significantly suppressed cell growth, which could be reversed by the ferroptosis inhibitor, ferrostatin-1. HG treatment time-dependently induced ferroptosis in human retinal capillary endothelial cells (HRCECs) and induced TRIM46 expression. Lentiviral-mediated overexpression of TRIM46 decreased cell resistance against HG-induced ferroptosis, whereas knockdown showed the opposite effect. Administration of RSL3, a ferroptosis agonist, was able to reverse the protective effects of TRIM46 silencing. TRIM46 interacted with GPX4, an important enzyme that suppresses ferroptosis, and promoted GPX4 ubiquitination. Furthermore, lentiviral-mediated overexpression ofGPX4 ameliorated the effects of TRIM46 overexpression and conferred protection to cells against HG-induced ferroptosis. CONCLUSION: TRIM46 and GPX4 form a regulatory pathway that controls HG-induced ferroptosis of HRCECs. Inhibiting this pathway or sustaining the expression of GPX4 enables cells to resist damage caused by HG. We provide new mechanistic insight into the pathology of DR and identified TRIM46 and GPX4 as two molecular targets for the development of effective drugs for DR treatment.
Assuntos
Endotélio Vascular/patologia , Ferroptose , Glucose/efeitos adversos , Inibidores do Crescimento/efeitos adversos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Retina/patologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Morte Celular , Proliferação de Células , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio , Retina/efeitos dos fármacos , Retina/metabolismo , Edulcorantes/efeitos adversosRESUMO
INTRODUCTION: Optical coherence tomography angiography (OCTA) facilitates the detection of choroidal neovascularization (CNV). This study explored the role of nonhomogenous hyperreflectivity implying putative CNV in the choriocapillaris layer on OCTA in central serous chorioretinopathy (CSCR). METHODS: Thirteen eyes out of 12 patients with CSCR were examined with OCTA. The nonhomogenous hyperreflectivity was compared with the histological morphology of experimental CNV. The effect of intravitreal anti-vascular endothelial growth factor (VEGF) was evaluated by analyzing the changes in central macular thickness (CMT) and the height of subretinal fluid (SRF). RESULTS: Comparison of the nonhomogenous hyperreflectivity on OCTA with the established CNV in two animal models strongly indicated these signals are putative CNV. During following-up, these nonhomogenous hyperreflectivity in CSCR developed into visible CNV on OCTA. Moreover, anti-VEGF treatment was effective to reduce both the SRF and CMT in CSCR with nonhomogenous hyperreflectivity or secondary CNV within 2 months. CONCLUSION: This study suggested that the nonhomogenous hyperreflectivity on OCTA could be served as a diagnostic biomarker for putative CNV in CSCR, implying early treatment with anti-VEGF.
Assuntos
Coriorretinopatia Serosa Central , Neovascularização de Coroide , Biomarcadores , Coriorretinopatia Serosa Central/complicações , Coriorretinopatia Serosa Central/diagnóstico , Coriorretinopatia Serosa Central/tratamento farmacológico , Corioide/patologia , Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/tratamento farmacológico , Fatores de Crescimento Endotelial , Angiofluoresceinografia/métodos , Humanos , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodosRESUMO
INTRODUCTION: To describe the hyperreflective foci (HRF) on optical coherence tomography angiography (OCTA) in diabetic macular edema (DME) with subretinal fluid (SRF) and explore the association of HRF in the outer retina with photoreceptor integrity and visual outcomes after anti-vascular endothelial growth factor (anti-VEGF) treatment. METHODS: We retrospectively reviewed 46 eyes (36 patients) with DME treated with anti-VEGF drugs. The following parameters, including best-corrected visual acuity (BCVA), central macular thickness (CMT), the height of subretinal fluid (SRF), the number of HRF in the superficial capillary plexus (SCP), deep capillary plexus (DCP), and the outer retina, as well as the integrity of external limiting membrane (ELM) and ellipsoid zone (EZ), were evaluated and compared between the baseline and after 2 monthly injections of anti-VEGF drugs. The relationship between the HRF in the outer retina and the integrity of ELM and EZ, as well as BCVA was analyzed. RESULTS: BCVA was significantly improved in DME after anti-VEGF treatment, however, for the subgroup of DME patients with SRF, visual acuity remained unchanged after anti-VEGF treatment (p < 0.05 vs. p = 0.375). The number of HRF (p < 0.05), CMT (p ï¼ 0.001), and SRF height (p ï¼ 0.001) were significantly reduced, accompanied with partial restoration of ELM and EZ integrity after anti-VEGF injection. The HRF in the outer retina was correlated with the final ELM (p = 0.036) and EZ (p = 0.004) status. The final BCVA was significantly better in eyes with intact ELM (p = 0.002) and EZ at final visit (p< 0.001). CONCLUSION: The number of HRF in outer retina was negatively associated with the microstructural restoration of ELM and EZ, as well as the visual outcome in DME patients with SRF after anti-VEGF treatment.
RESUMO
AIMS/HYPOTHESIS: Microglial activation in diabetic retinopathy and the protective effect of erythropoietin (EPO) have been extensively studied. However, the regulation of microglia in the retina and its relationship to inner blood-retinal barrier (iBRB) maintenance have not been fully characterised. In this study, we investigated the role of microglia in iBRB breakdown in diabetic retinopathy and the protective effects of EPO in this context. METHODS: Male Sprague Dawley rats were injected intraperitoneally with streptozotocin (STZ) to establish the experimental model of diabetes. At 2 h after STZ injection, the right and left eyes were injected intravitreally with EPO (16 mU/eye, 2 µl) and an equivalent volume of normal saline (NaCl 154 mmol/l), respectively. The rats were killed at 2 or 8 weeks after diabetes onset. Microglia activation was detected by ionised calcium binding adaptor molecule (IBA)-1 immunolabelling. Leakage of the iBRB was evaluated by albumin staining and FITC-dextran permeability assay. BV2 cells and primary rat microglia under hypoxic conditions were used to model microglial activation in diabetic retinopathy. Phagocytosis was examined by confocal microscopy in flat-mounted retina preparations and in microglia and endothelial cell cocultures. Protein levels of IBA-1, CD11b, complement component 1r (C1r), and Src/Akt/cofilin signalling pathway components were assessed by western blotting. RESULTS: In diabetic rat retinas, phagocytosis of endothelial cells by activated microglia was observed at 8 weeks, resulting in an increased number of acellular capillaries (increased by 426.5%) and albumin leakage. Under hypoxic conditions, activated microglia transmigrated to the opposite membrane of the transwell, where they disrupted the endothelial cell monolayer by engulfing endothelial cells. The activation and phagocytic activity of microglia was blocked by intravitreal injection of EPO. In vitro, IBA-1, CD11b and C1r protein levels were increased by 50.9%, 170.0% and 135.5%, respectively, by hypoxia, whereas the phosphorylated proteins of Src/Akt/cofilin signalling pathway components were decreased by 74.2%, 47.8% and 39.7%, respectively, compared with the control; EPO treatment abrogated these changes. CONCLUSIONS/INTERPRETATION: In experimental diabetic retinopathy, activated microglia penetrate the basement membrane of the iBRB and engulf endothelial cells, leading to iBRB breakdown. EPO exerts a protective effect that preserves iBRB integrity via activation of Src/Akt/cofilin signalling in microglia, as demonstrated in vitro. These data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of EPO for the treatment of diabetic retinopathy. Graphical abstract.
Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/fisiopatologia , Eritropoetina/administração & dosagem , Microglia/fisiologia , Fagocitose/efeitos dos fármacos , Fatores de Despolimerização de Actina/metabolismo , Animais , Barreira Hematorretiniana/fisiopatologia , Hipóxia Celular , Técnicas de Cocultura , Células Endoteliais/metabolismo , Eritropoetina/uso terapêutico , Humanos , Injeções Intravítreas , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismoRESUMO
The pathophysiology of diabetic retinopathy (DR) was complex. Under hyperglycemic conditions, the release of proinflammatory cytokines and the adhesion of leukocytes to retinal capillaries contribute to endothelial damage and the subsequent increase in vascular permeability resulting in macular edema. Melatonin, produced in the retina to regulate redox reactions and dopamine metabolism, plays protective roles against inflammation and oxidative stress. Considering its anti-inflammatory and antioxidative properties, melatonin was speculated to exert beneficial effects in DR. In this study, we characterized the protective effects of melatonin on the inner blood-retinal barrier (iBRB), as well as the possible mechanisms in experimental DR. Results showed that in diabetic rat retinas, the leakage of iBRB and the expression of inflammatory factors (VEGF, TNF-α, IL-1ß, ICAM-1, and MMP9) increased dramatically, while the expression of tight junction proteins (ZO-1, occludin, JAM-A, and claudin-5) decreased significantly. The above changes were largely ameliorated by melatonin. The in vivo data were confirmed in vitro. In addition, the protein expressions of p38 MAPK, NF-κB, and TXNIP were upregulated significantly in diabetes and were downregulated following melatonin treatment. Melatonin could maintain the iBRB integrity by upregulating the expression of tight junction proteins via inhibiting p38/TXNIP/NF-κB pathway, thus decreasing the production of inflammatory factors. This study may shed light on the development of melatonin-based DR therapy.
Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Melatonina/farmacologia , NF-kappa B/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Masculino , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacosRESUMO
OBJECTIVE: To examine the mechanisms of Nogo-B (RTN4B) in the protection of blood-retinal barrier in experimental diabetic retinopathy. METHODS: The level of Nogo-B in vitreous and plasma samples was detected with ELISA. Diabetes was induced in Sprague-Dawley rats with intraperitoneal injection of streptozotocin. The rats were injected intravitreally with adeno-associated virus (AAV) for knockdown the expression of Nogo-B in retina or/and as AAV negative control. The permeability of blood-retinal barrier was detected with Rhodamine-B-dextran leakage assay. The expressions of Nogo-B, junctional proteins, inflammatory factors and signaling pathways were examined with Western blot and quantitative real-time PCR. RESULTS: Nogo-B expression was significantly upregulated in clinical samples and experimental diabetic rat models. Under normal condition, Nogo-B knockdown resulted in the increased permeability of retinal blood vessels. In diabetic rat retinas, the vascular leakage was increased significantly, which was partially decreased by Nogo-B knockdown through increasing p/t-Src (Tyr529) and p/t-Akt (Ser473), and decreasing p/t-ERK1/2. CONCLUSION: Nogo-B was increased in diabetic retinopathy and silencing Nogo-B is a promising therapy for diabetic retinopathy.
Assuntos
Diabetes Mellitus Experimental/genética , Retinopatia Diabética/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Superfície Celular/genética , Quinases da Família src/genética , Animais , Barreira Hematorretiniana/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/terapia , Regulação da Expressão Gênica , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Retina/metabolismo , Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina/administração & dosagem , Quinases da Família src/metabolismoRESUMO
Deep mining of the molecular mechanisms underlying diabetic retinopathy (DR) is critical for the development of novel therapeutic targets. This study aimed to identify key molecular signatures involved in experimental DR on the basis of integrated bioinformatics analysis. Four datasets consisting of 37 retinal samples were downloaded from the National Center of Biotechnology Information Gene Expression Omnibus. After batch-effect adjustment, bioinformatics tools such as Networkanalyst, Enrichr, STRING, and Metascape were used to evaluate the differentially expressed genes (DEGs), perform enrichment analysis, and construct protein-protein interaction networks. The hub genes were identified using Cytoscape software. The DEGs of interest from the meta-analysis were confirmed by quantitative reverse transcription-polymerase chain reaction in diabetic rats and a high-glucose-treated retinal cell model, respectively. A total of 743 DEGs related to lens differentiation, insulin resistance, and high-density lipoprotein (HDL) cholesterol metabolism were obtained using the meta-analysis. Alterations of dynamic gene expression in the chloride ion channel, retinol metabolism, and fatty acid metabolism were involved in the course of DR in rats. Importantly, H3K27m3 modifications regulated the expression of most DEGs at the early stage of DR. Using an integrated bioinformatics approach, novel molecular signatures were obtained for different stages of DR progression, and the findings may represent distinct therapeutic strategies for DR patients.
Assuntos
Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Regulação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Animais , Linhagem Celular , Bases de Dados Factuais , Diabetes Mellitus Experimental/genética , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Perfilação da Expressão Gênica/métodos , Glucose/farmacologia , Histonas/genética , Histonas/metabolismo , Masculino , Ratos Sprague-DawleyRESUMO
Photoreceptor (PR) dysfunction or death is the key pathological change in retinal degeneration (RD). The death of PRs might be due to a primary change in PRs themselves or secondary to the dysfunction of the retinal pigment epithelium (RPE). Poly(ADP-ribose) polymerase (PARP) was reported to be involved in primary PR death, but whether it plays a role in PR death secondary to RPE dysfunction has not been determined. To clarify this question and develop a new therapeutic approach, we studied the changes in PAR/PARP in the RCS rat, a RD model, and tested the effect of PARP intervention when given alone or in combination with RPE cell transplantation. The results showed that poly(ADP-ribosyl)ation of proteins was increased in PRs undergoing secondary death in RCS rats, and this result was confirmed by the observation of similar changes in sodium iodate (SI)-induced secondary RD in SD rats. The increase in PAR/PARP was highly associated with increased apoptotic PRs and decreased visual function, as represented by lowered b-wave amplitudes on electroretinogram (ERG). Then, as we expected, when the RCS rats were treated with subretinal injection of the PARP inhibitor PJ34, the RD process was delayed. Furthermore, when PJ34 was given simultaneously with subretinal ARPE-19 cell transplantation, the therapeutic effects were significantly improved and lasted longer than those of ARPE-19 or PJ34 treatment alone. These results provide a potential new approach for treating RD.
Assuntos
Modelos Animais de Doenças , Fenantrenos/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Poli Adenosina Difosfato Ribose/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Western Blotting , Sobrevivência Celular/fisiologia , Transplante de Células , Células Cultivadas , Eletrorretinografia , Marcação In Situ das Extremidades Cortadas , Células Fotorreceptoras de Vertebrados/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Mutantes , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologiaRESUMO
MicroRNAs (miRNAs) have been shown to play critical roles in the pathogenesis and progression of degenerative retinal diseases like age-related macular degeneration (AMD). In this study, we first demonstrated that miR-24 plays an important role in maintaining retinal structure and visual function of rats by targeting chitinase-3-like protein 1 (CHI3L1). In the retinal pigment epithelial (RPE) cells of Royal College of Surgeons (RCS) rats, an animal model of genetic retinal degeneration (RD), miR-24 was found lower and CHI3L1 level was higher in comparison with those in Sprague-Dawley (SD) rats. Other changes in the eyes of RCS rats include activated AKT/mTOR and ERK pathways and abnormal autophagy in the RPE cells. Such roles of miR-24 and CHI3L1 were further confirmed in RCS rats by subretinal injection of agomiR-24, which decreased CHI3L1 level and preserved retinal structure and function. Upstream, NF-κB was identified as the regulator of miR-24 in the RPE cells of these rats. On the other hand, in SD rats, intraocular treatment of antagomiR-24 induced pathological changes similar to those in RCS rats. The results revealed the protective roles for miR-24 to RPE cells and a mechanism for RD in RCS rats was proposed: extracellular stress stimuli first activate the NF-κB signaling pathway, which lowers miR-24 expression so that CHI3L1 increased. CHI3L1 sequentially results in aberrant autophagy and RPE dysfunction by activating AKT/mTOR and ERK pathways. Taken together, although the possibility, that the therapeutic effects in RCS rats are caused by other transcriptional changes regulated by miR-24, cannot be excluded, these findings indicate that miR-24 protects rat retina by targeting CHI3L1. Thus, miR-24 and CHI3L1 might be the targets for developing more effective therapy for degenerative retinal diseases like AMD.
Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , MicroRNAs/fisiologia , Retina/metabolismo , Degeneração Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/metabolismo , Animais , Autofagia , Western Blotting , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Eletrorretinografia , Marcação In Situ das Extremidades Cortadas , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Retina/fisiopatologia , Degeneração Retiniana/enzimologia , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/fisiopatologia , Transdução de SinaisRESUMO
Retinitis pigmentosa (RP) is a group of genetically heterogeneous retinal diseases with more than 80 identified causative genes to date. Mutations in the RHO (rhodopsin, OMIM, 180380) are the most common cause of autosomal dominant RP (adRP) worldwide. RHO is also one of the few RP genes that can cause autosomal recessive RP (arRP). To explore the frequency of RP mutations in Chinese populations, panel-based NGS (next-generation sequencing) screening and Sanger sequencing validation were performed for RP patients from 72 unrelated Chinese families. Here we reported the identified mutations only in the RHO gene. Our results showed that 4 mutations in RHO were detected in 5 (6.94%) of the 72 RP families, including two known missense mutations, c.158Câ¯>â¯G (p.P53R) and c.551Aâ¯>â¯C (p.Q184P), and two novel mutations, c.34delC (p.P12NA) and c.82Câ¯>â¯T (p.Q28X). The c.34delC (p.P12NA) mutation was detected in heterozygous state in one patient with intermediate RP phenotype. The c.82Câ¯>â¯T (p.Q28X) mutation was found in a homozygous state in one proband with advanced RP phenotype at the age of 32. Clinical examination of the heterozygous carriers of c.82Câ¯>â¯T (p.Q28X) in that family showed that the father at the age of 60s experienced no symptoms of RP and normal fundus examinations but displayed reduced electroretinography (ERG) and abnormal visual field. The sister and brother at the age of 30s showed no typical aspects of RP phenotypes. Our results not only expand the mutation spectrum of the RHO gene, but also suggest that the 2 null mutations might play minor dominant effects, leading to less severe and slower retinal degeneration in heterozygous state and more severe phenotype in homozygous state.