Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 128, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472451

RESUMO

Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.


Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Camundongos , Histonas/metabolismo , Metilação , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
2.
EMBO J ; 39(21): e104472, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929771

RESUMO

In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult-born neurons. We investigated the role of canonical Wnt/ß-catenin signaling in dendritogenesis of adult-born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing ß-catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle-aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of ß-catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of ß-catenin signaling are essential for the correct functional integration of adult-born neurons and suggest Wnt/ß-catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Envelhecimento/metabolismo , Animais , Proteína Axina/genética , Feminino , Hipocampo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Via de Sinalização Wnt , beta Catenina/genética
3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256154

RESUMO

Three-dimensional (3D) hepatocyte models have become a research hotspot for evaluating drug metabolism and hepatotoxicity. Compared to two-dimensional (2D) cultures, 3D cultures are better at mimicking the morphology and microenvironment of hepatocytes in vivo. However, commonly used 3D culture techniques are not suitable for high-throughput drug screening (HTS) due to their high cost, complex handling, and inability to simulate cell-extracellular matrix (ECM) interactions. This article describes a method for rapid and reproducible 3D cell cultures with ECM-cell interactions based on 3D culture instrumentation to provide more efficient HTS. We developed a microsphere preparation based on a high-voltage electrostatic (HVE) field and used sodium alginate- and collagen-based hydrogels as scaffolds for 3D cultures of HepG2 cells. The microsphere-generating device enables the rapid and reproducible preparation of bioactive hydrogel microspheres. This 3D culture system exhibited better cell viability, heterogeneity, and drug-metabolizing activity than 2D and other 3D culture models, and the long-term culture characteristics of this system make it suitable for predicting long-term liver toxicity. This system improves the overall applicability of HepG2 spheroids in safety assessment studies, and this simple and controllable high-throughput-compatible method shows potential for use in drug toxicity screening assays and mechanistic studies.


Assuntos
Hidrogéis , Fígado , Humanos , Microesferas , Células Hep G2 , Hidrogéis/farmacologia , Eletricidade Estática
4.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446226

RESUMO

The remarkable advancements related to cerebral organoids have provided unprecedented opportunities to model human brain development and diseases. However, despite their potential significance in neurodegenerative diseases such as Parkinson's disease (PD), the role of exosomes from cerebral organoids (OExo) has been largely unknown. In this study, we compared the effects of OExo to those of mesenchymal stem cell (MSC)-derived exosomes (CExo) and found that OExo shared similar neuroprotective effects to CExo. Our findings showed that OExo mitigated H2O2-induced oxidative stress and apoptosis in rat midbrain astrocytes by reducing excess ROS production, antioxidant depletion, lipid peroxidation, mitochondrial dysfunction, and the expression of pro-apoptotic genes. Notably, OExo demonstrated superiority over CExo in promoting the differentiation of human-induced pluripotent stem cells (iPSCs) into dopaminergic (DA) neurons. This was attributed to the higher abundance of neurotrophic factors, including neurotrophin-4 (NT-4) and glial-cell-derived neurotrophic factor (GDNF), in OExo, which facilitated the iPSCs' differentiation into DA neurons in an LIM homeobox transcription factor 1 alpha (LMX1A)-dependent manner. Our study provides novel insight into the biological properties of cerebral organoids and highlights the potential of OExo in the treatment of neurodegenerative diseases such as PD.


Assuntos
Exossomos , Doença de Parkinson , Ratos , Humanos , Animais , Exossomos/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Diferenciação Celular/genética , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Organoides/metabolismo , Estresse Oxidativo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Homeodomínio LIM/metabolismo
5.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36236388

RESUMO

A traditional flat-panel spectrometer does not allow high-resolution observation and miniaturization simultaneously. In this study, a compact, high-resolution cross-dispersion spectrometer was designed based on the theoretical basis of echelle grating for recording an infrared spectrum. To meet the high-resolution observation and miniaturization design requirements, a reflective immersion grating was used as the primary spectroscopic device. To compress the beam aperture of the imaging system, the order-separation device of the spectrometer adopted toroidal uniform line grating, which had both imaging and dispersion functions in the spectrometer. The aberration balance condition of the toroidal uniform line grating was analyzed based on the optical path difference function of the concave grating, and dispersion characteristics of the immersed grating and thermal design of the infrared lens were discussed based on the echelle grating. An immersion echelle spectrometer optical system consisting of a culmination system, an immersed echelle grating, and a converged system was used. The spectrometer was based on the asymmetrical Czerny-Turner and Littrow mount designs, and it was equipped with a 320 × 256 pixel detector array. The designed wavelength range was 3.7-4.8 µm, the F-number was 4, and the central wavelength resolution was approximately 30,000. An infrared cooling detector was used. The design results showed that, in the operating band range, the root implied that the square diameter of the spectrometer spot diagram was less than 30 µm, the energy was concentrated in a pixel size range, and the spectrometer system design met the requirements.

6.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559980

RESUMO

To combine the advantages of linear active disturbance rejection control (LADRC) and nonlinear active disturbance rejection control (NLADRC) and improve the contradiction between the response speed and control precision caused by the limitation of parameter α in NLADRC, a linear-nonlinear switching active disturbance rejection control (SADRC) strategy based on linear-nonlinear switching extended state observer (SESO) and linear-nonlinear switching state error feedback control law (SSEF) is proposed in this paper. First, the reasons for the performance differences between LADRC and NLADRC are analysed from a theoretical point of view, then a linear-nonlinear switching function (SF) that can change the switching point by adjusting its parameters is constructed and then propose SESO and SSEF based on this function. Subsequently, the convergence range of the observation error of the SESO is derived, and the stability of the closed-loop system with the application of SSEF is also demonstrated. Finally, the proposed SADRC control strategy is applied to a 707 W permanent magnet synchronous motor (PMSM) experimental platform, and both the dynamic and static characteristics of SADRC are verified. The experimental results show that the proposed SADRC control strategy can well combine the performance advantages of LADRC and NLADRC and can better balance the response speed and control precision and has a better capacity for disturbance rejection, which has potential application in engineering practise.

7.
Sensors (Basel) ; 22(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36236349

RESUMO

Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise reduction and compensation methods based on traditional models are not applicable. This paper proposes a noise reduction method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state. In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep learning, the noise features are obtained from the past gyroscope data, and the parameter optimization of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves the filtering and noise reduction accuracy. The experimental results show that, compared with the original data, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes, respectively, reducing the noise impact by nearly three times.

8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830023

RESUMO

Transplantation of exogenous dopaminergic (DA) neurons is an alternative strategy to replenish DA neurons that have lost along the course of Parkinson's disease (PD). From the perspective of ethical acceptation, the source limitations, and the intrinsic features of PD pathology, astrocytes (AS) and mesenchymal stem cells (MSCs) are the two promising candidates of DA induction. In the present study, we induced AS or MSCs primary culture by the combination of the classical transcription-factor cocktails Mash1, Lmx1a, and Nurr1 (MLN), the chemical cocktails (S/C/D), and the morphogens SHH, FGF8, and FGF2 (S/F8/F2); the efficiency of induction into DA neurons was further analyzed by using immunostaining against the DA neuronal markers. AS could be efficiently converted into the DA neurons in vitro by the transcriptional regulation of MLN, and the combination with S/C/D or S/F8/F2 further increased the conversion efficiency. In contrast, MSCs from umbilical cord (UC-MSCs) or adipose tissue (AD-MSCs) showed moderate TH immunoreactivity after the induction with S/F8/F2 instead of with MLN or S/C/D. Our data demonstrated that AS and MSCs held lineage-specific molecular codes on the induction into DA neurons and highlighted the unique superiority of AS in the potential of cell replacement therapy for PD.


Assuntos
Astrócitos/transplante , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doença de Parkinson/terapia , Animais , Astrócitos/metabolismo , Diferenciação Celular/genética , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/transplante , Humanos , Transplante de Células-Tronco Mesenquimais , Doença de Parkinson/genética , Doença de Parkinson/patologia , Cultura Primária de Células , Ratos , Fatores de Transcrição/genética , Cordão Umbilical/metabolismo , Cordão Umbilical/transplante
9.
J Cell Mol Med ; 24(3): 2135-2144, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944568

RESUMO

Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple-negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi-omic data showed that ERK1/c-MYC axis was identified as a major pivot in PRKD3-mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c-MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c-MYC but did not down-regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c-MYC phosphorylation further led to the lower protein level of c-MYC and then reduced the expression of the c-MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c-MYC in the PRKD3-knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1-c-MYC axis.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Proteína Quinase Ativada por DNA/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Oncogenes/genética , Fosforilação/genética , Transdução de Sinais/genética
10.
Biochem Biophys Res Commun ; 527(1): 311-316, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446386

RESUMO

Brain-derived neurotrophic factor (BDNF), which regulates the neuronal survival, differentiation and synaptic plasticity, has been proved to play a critical role in the pathology and treatment of several psychiatric disorders including depression. Dexamethaone (DEX) is indicated for a number of conditions in perinatal medicine, however, the long-term impact of early-life DEX exposure on BDNF expression in hippocampus remains unknown. Here we found that neonatal DEX(ND) exposure leads to insignificant change of BDNF expression levels in the adulthood, albeit increased hyperanxious and depressive-like behaviors. However, the bdnf mRNA and BDNF protein levels were significantly reduced in all the hippocampal subregions during the developmental stages, including the perinatal period and puberty. We conclude that early life DEX exposure leads to a persistent disturbance of BDNF signaling during the developmental stages, which might be associated with the life-long impairment of hippocampal function.


Assuntos
Ansiedade/induzido quimicamente , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Depressão/induzido quimicamente , Dexametasona/farmacologia , Hipocampo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
11.
Muscle Nerve ; 61(6): 815-825, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170960

RESUMO

INTRODUCTION: The immuno-microenvironment of injured nerves adversely affects mesenchymal stem cell (MSC) therapy for neurotmesis. Magnetic resonance imaging (MRI) can be used noninvasively to monitor nerve degeneration and regeneration. The aim of this study was to investigate nerve repair after MSC transplantation combined with microenvironment immunomodulation in neurotmesis by using multiparametric MRI. METHODS: Rats with sciatic nerve transection and surgical coaptation were treated with MSCs combined with immunomodulation or MSCs alone. Serial multiparametric MRI examinations were performed over an 8-week period after surgery. RESULTS: Nerves treated with MSCs combined with immunomodulation showed better functional recovery, rapid recovery of nerve T2, fractional anisotropy and radial diffusivity values, and more rapid restoration of the fiber tracks than nerves treated with MSCs alone. DISCUSSION: Transplantation of MSCs in combination with immunomodulation can exert a synergistic repair effect on neurotmesis, which can be monitored by multiparametric MRI.


Assuntos
Imunomodulação/fisiologia , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Neuropatia Ciática/diagnóstico por imagem , Traumatismos do Sistema Nervoso/diagnóstico por imagem , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/imunologia , Neuropatia Ciática/terapia , Traumatismos do Sistema Nervoso/imunologia , Traumatismos do Sistema Nervoso/terapia
12.
Cell Physiol Biochem ; 52(3): 382-396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845378

RESUMO

BACKGROUND/AIMS: Breast cancer is clinically classified into three main subtypes: estrogen receptor-positive (ER+) breast cancer, human epidermal growth factor receptor 2-positive (HER2+) breast cancer, and triple-negative breast cancer (TNBC). Without specific targeted therapies, patients with TNBC have poorer prognosis compared with those with ER+ and HER2+ breast cancer. Protein kinase D (PRKD) family members play crucial roles in cancer progression. CRT0066101, a PRKD inhibitor, has been reported to have anticancer activity in many cancer types. Nevertheless, the role and mechanism of CRT0066101 in TNBC have not been well investigated. METHODS: The expression level of PRKDs was analyzed in breast cancer samples and breast cancer cell lines. The effects of inhibiting PRKD activity with CRT0066101 on TNBC cell proliferation, cell cycle, apoptosis, and tumor growth were studied by Cell Counting Kit8 assay, cell cycle assay, propidium iodide/annexin-V assay, and a xenograft mouse model, respectively. To uncover the molecular mechanism of CRT0066101 in TNBC, comparative phosphoproteomic analysis using iTRAQ was employed. RESULTS: We found that PRKD2 and PRKD3 were preferentially expressed in breast cancers. Immunohistochemistry confirmed the overexpression of PRKD2 and PRKD3 in TNBC. CRT0066101, which inhibited the activity of PRKDs, dramatically inhibited proliferation, increased apoptosis and the G1-phase population of TNBC cells in vitro, and reduced breast tumor volume in vivo. Comparative phosphoproteomic analysis between breast cancer cells with and without CRT0066101 treatment revealed that the anti-breast cancer effects involved regulation of a complex network containing multiple enriched pathways and several hub-nodes contributing to multiple cancer-related processes, thus explaining the described effects of CRT0066101 on TNBC in vitro and in vivo. Finally, we validated several targets of PRKD inhibition by treatment with CRT0066101 and small interfering RNAs against PRKD2 and PRKD3 (siPRKD2 and siPRKD3), including p-MYC(T58/ S62), p-MAPK1/3(T202/Y204), p-AKT(S473), p-YAP(S127), and p-CDC2(T14). CONCLUSION: PRKD inhibitor CRT0066101 exhibits anti-TNBC effects via modulating a phosphor-signaling network and inhibiting the phosphorylation of many cancer-driving factors, including MYC, MAPK1/3, AKT, YAP, and CDC2, providing insight into the important roles as well as the molecular mechanism of CRT0066101 as an effective drug for TNBC.


Assuntos
Apoptose/efeitos dos fármacos , Pirimidinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Fosfopeptídeos/análise , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
13.
J Neurosci ; 35(39): 13385-401, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424886

RESUMO

Wingless-related MMTV integration site 1 (WNT1)/ß-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/ß-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/ß-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a secreted modulator of WNT (Wingless-related MMTV integration site)/ß-catenin signaling, is both necessary and sufficient for the proper differentiation and survival of a rostrolateral (parabrachial pigmented nucleus and dorsomedial substantia nigra pars compacta) mesodiencephalic dopaminergic neuron subset, using Dkk3 mutant mice and murine primary ventral midbrain and pluripotent stem cells. The progressive loss of these dopamine-producing mesodiencephalic neurons is a hallmark of human Parkinson's disease, which can up to now not be halted by clinical treatments of this disease. Thus, the soluble DKK3 protein might be a promising new agent for the improvement of current protocols for the directed differentiation of pluripotent and multipotent stem cells into mesodiencephalic dopaminergic neurons and for the promotion of their survival in situ.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Mesencéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma , Proteína Wnt1/genética , Proteína Wnt1/fisiologia
14.
Neurobiol Dis ; 82: 32-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26049140

RESUMO

The protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context. We demonstrate here that the sustained and ectopic expression of Wnt1 in the SNc and VTA DA neurons of En1(+/Wnt1) mice also protected these genetically affected En1 heterozygote (En1(+/-)) neurons from their premature degeneration in the adult mouse VM. We identified a developmental gene cascade that is up-regulated in the adult En1(+/Wnt1) VM, including the direct WNT1/ß-catenin signaling targets Lef1, Lmx1a, Fgf20 and Dkk3, as well as the indirect targets Pitx3 (activated by LMX1A) and Bdnf (activated by PITX3). We also show that the secreted neurotrophin BDNF and the secreted WNT modulator DKK3, but not the secreted growth factor FGF20, increased the survival of En1 mutant dopaminergic neurons in vitro. The WNT1-mediated signaling pathway and its downstream targets BDNF and DKK3 might thus provide a useful means to treat certain genetic and environmental (neurotoxic) forms of human PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Degeneração Neural/genética , Transdução de Sinais/genética , Proteína Wnt1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Neurônios Dopaminérgicos/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Regulação para Cima , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia
15.
ACS Appl Bio Mater ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875521

RESUMO

Glioma is the most common primary malignant tumor in the brain. The diagnostic accuracy and treatment efficiency of glioma are facing great challenges due to the presence of the blood-brain barrier (BBB) and the high infiltration of glioma. There is an urgent need to explore the combination of diagnostic and therapeutic approaches to achieve a more accurate diagnosis, as well as guidance before and after surgery. In this work, we induced human induction of pluripotent stem cell into neural progenitor cells (NPCs) and synthesized nanoprobes labeled with enhanced green fluorescent protein (EGFP, abbreviated as MFe3O4-labeled EGFP-NPCs) for photothermal therapy. Nanoprobes carried by NPCs can effectively penetrate the BBB and target glioma for the purpose of magnetic resonance imaging and guiding surgery. More importantly, MFe3O4-labeled EGFP-NPCs can effectively induce local photothermal therapy, conduct preoperative tumor therapy, and inhibit the recurrence of postoperative glioma. This work shows that MFe3O4-labeled EGFP-NPCs is a promising nanoplatform for glioma diagnosis, accurate imaging-guided surgery, and effective photothermal therapy.

16.
Cell Prolif ; 57(3): e13554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37767639

RESUMO

'General requirements for the production of extracellular vesicles derived from human stem cells' is the first guideline for stem cells derived extracellular vesicles in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the general requirements, process requirements, packaging and labelling requirements and storage requirements for preparing extracellular vesicles derived from human stem cells, which is applicable to the research and production of extracellular vesicles derived from stem cells. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardisation of extracellular vesicles derived from human stem cells.


Assuntos
Vesículas Extracelulares , Células-Tronco , Humanos , China
17.
J Neurosci ; 32(38): 13292-308, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993445

RESUMO

MicroRNAs have emerged as key posttranscriptional regulators of gene expression during vertebrate development. We show that the miR-200 family plays a crucial role for the proper generation and survival of ventral neuronal populations in the murine midbrain/hindbrain region, including midbrain dopaminergic neurons, by directly targeting the pluripotency factor Sox2 and the cell-cycle regulator E2F3 in neural stem/progenitor cells. The lack of a negative regulation of Sox2 and E2F3 by miR-200 in conditional Dicer1 mutants (En1(+/Cre); Dicer1(flox/flox) mice) and after miR-200 knockdown in vitro leads to a strongly reduced cell-cycle exit and neuronal differentiation of ventral midbrain/hindbrain (vMH) neural progenitors, whereas the opposite effect is seen after miR-200 overexpression in primary vMH cells. Expression of miR-200 is in turn directly regulated by Sox2 and E2F3, thereby establishing a unilateral negative feedback loop required for the cell-cycle exit and neuronal differentiation of neural stem/progenitor cells. Our findings suggest that the posttranscriptional regulation of Sox2 and E2F3 by miR-200 family members might be a general mechanism to control the transition from a pluripotent/multipotent stem/progenitor cell to a postmitotic and more differentiated cell.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Fator de Transcrição E2F3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , MicroRNAs/metabolismo , Células-Tronco Neurais/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Fatores Etários , Animais , Contagem de Células , Ciclo Celular/genética , Morte Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Chlorocebus aethiops , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Fator de Transcrição E2F3/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Modelos Biológicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Rombencéfalo/citologia , Ribonuclease III/genética , Ribonuclease III/metabolismo , Fatores de Transcrição SOXB1/genética , Serotonina/metabolismo , Transdução de Sinais/genética , Fator de Transcrição Brn-3A/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
18.
ISA Trans ; 139: 436-447, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37164877

RESUMO

In order to improve the performance of a permanent magnet synchronous motor (PMSM) speed controller, an advanced reaching law sliding mode control (ASMC) strategy is proposed in this study. The advanced sliding mode reaching law (ASMRL) introduces a power term of the system state and a checkmark function term about the sliding mode function based on the traditional constant-proportional rate reaching law(TSMRL) , and replaces the sign function with a hyperbolic tangent function. A detailed theoretical analysis of the characteristics of the ASMRL is then presented. The theoretical analysis shows that the ASMRL converges to the sliding mode surface more quickly and with less chattering than the TSMRL. In addition, a sliding mode disturbance observer (SMDO) is designed to estimate the total disturbance of the system, and the estimated disturbance is compensated to ASMC. Then the stability of the system with ASMC and the stability of the system with ASMC+SMDO is proved by Lyapunov's theorem. Finally, the proposed control strategy is validated on an experimental platform of PMSM. The experimental results show that the ASMC has a faster convergence speed, smaller chattering, better disturbance rejection performance than the traditional constant-proportional rate reaching law sliding mode control(TSMC), and better performance with the addition of SMDO.

19.
Cell Transplant ; 32: 9636897231156215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36840468

RESUMO

Healing of full-thickness skin wounds remains a major challenge. Recently, human umbilical cord mesenchymal stem cells (hUC-MSCs) were shown to possess an extraordinary potential to promote skin repair in clinical settings. However, their low survival rate after transplantation limits their therapeutic efficiency in treating full-thickness skin wounds. Hydrogels are considered an ideal cell transplantation vector owing to their three-dimensional mesh structure, good biosafety, and biodegradation. The objective of this study was to investigate the skin wound healing effect of a fibrin hydrogel scaffold loaded with hUC-MSCs. We found that the fibrin hydrogel had a three-dimensional mesh structure and low cytotoxicity and could prolong the time of cell survival in the peri-wound area. The number of green fluorescent protein (GFP)-labeled hUC-MSCs was higher in the full-thickness skin wound of mice treated with hydrogel-hUC-MSCs than those of mice treated with cell monotherapy. In addition, the combination therapy between the hydrogel and hUC-MSCs speed up wound closure, its wound healing rate was significantly higher than those of phosphate-buffered saline (PBS) therapy, hydrogel monotherapy, and hUC-MSCs monotherapy. Furthermore, the results showed that the combination therapy between hydrogel and hUC-MSCs increased keratin 10 and keratin 14 immunofluorescence staining, and upregulated the relative gene expressions of epidermal growth factor (EGF), transforming growth factor-ß1 (TGF-ß1), and vascular endothelial growth factor A (VEGFA), promoting epithelial regeneration and angiogenesis. In conclusion, the fibrin hydrogel scaffold provides a relatively stable sterile environment for cell adhesion, proliferation, and migration, and prolongs cell survival at the wound site. The hydrogel-hUC-MSCs combination therapy promotes wound closure, re-epithelialization, and neovascularization. It exhibits a remarkable therapeutic effect, being more effective than the monotherapy with hUC-MSCs or hydrogel.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cicatrização , Animais , Humanos , Camundongos , Hidrogéis , Transplante de Células-Tronco Mesenquimais/métodos , Cordão Umbilical/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alicerces Teciduais
20.
Metabolism ; 140: 155398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627079

RESUMO

INTRODUCTION: Cell therapy with mesenchymal stem cells (MSCs) and biomaterials holds great potential for the treatment of diabetic ulceration; however, the underlying mechanism as well as its compatibility with the first-line anti-diabetic drug, metformin (MTF), has not been well elucidated. METHODS: MSCs derived from the umbilical cord were labeled with fluorescent proteins, followed by transplantation in a fibrin scaffold (MSCs/FG) onto the STZ-induced diabetic wound in a C57BL6/J mouse model. MTF was administered by oral gavage at a dose of 250 mg/kg/day. The wound healing rate, epithelization, angiogenesis, and underlying mechanism were evaluated in MSCs/FG- and MTF-treated diabetic wounds. Moreover, the dose-dependent effects of MTF and involvement of the Akt/mTOR pathway were analyzed in keratinocyte and fibroblast cultures. RESULTS: MSCs/FG significantly promoted angiogenesis in diabetic wound healing without signs of differentiation or integration. The recruitment of fibroblasts and keratinocytes by MSCs/FG promotes migration and vascular endothelial growth factor (VEGF) expression in an Akt/mTOR-dependent manner. MTF, which is generally considered a mTOR inhibitor, displayed dose-dependent effects on MSC-unregulated Akt/mTOR and VEGF expression. Oral administration of MTF at an anti-diabetic dosage synergistically acted with MSCs/FG to promote Akt/mTOR activation, VEGF expression, and subsequent angiogenesis in diabetic wounds; however, it reduced the survival of MSCs. CONCLUSIONS: Our study identifies that MTF coordinates with mesenchymal cells to promote Akt/mTOR activation and VEGF-mediated angiogenesis during diabetic wound healing. These findings offer new insights into MSCs engraftment in FG scaffolds for diabetic wound healing and provide support for the promotion of MSCs therapy in patients prescribed with MTF.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Metformina , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Cicatrização/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA