Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Macromol Rapid Commun ; 45(5): e2300606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087799

RESUMO

Recent advancements in bioengineering and medical devices have been greatly influenced and dominated by synthetic polymers, particularly polyurethanes (PUs). PUs offer customizable mechanical properties and long-term stability, but their inherent hydrophobic nature poses challenges in practically biological application processes, such as interface high friction, strong protein adsorption, and thrombosis. To address these issues, surface modifications of PUs for generating functionally hydrophilic layers have received widespread attention, but the durability of generated surface functionality is poor due to irreversible mechanical wear or biodegradation. As a result, numerous researchers have investigated bulk modification techniques to incorporate zwitterionic polymers or groups onto the main or side chains of PUs, thereby improving their hydrophilicity and biocompatibility. This comprehensive review presents an extensive overview of notable zwitterionic PUs (ZPUs), including those based on phosphorylcholine, sulfobetaine, and carboxybetaine. The review explores their wide range of biomedical applications, from blood-contacting devices to antibacterial coatings, fouling-resistant marine coatings, separation membranes, lubricated surfaces, and shape memory and self-healing materials. Lastly, the review summarizes the challenges and future prospects of ZPUs in biological applications.


Assuntos
Polímeros , Poliuretanos , Humanos , Poliuretanos/química , Propriedades de Superfície , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Supuração
2.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050753

RESUMO

To date, general-purpose object-detection methods have achieved a great deal. However, challenges such as degraded image quality, complex backgrounds, and the detection of marine organisms at different scales arise when identifying underwater organisms. To solve such problems and further improve the accuracy of relevant models, this study proposes a marine biological object-detection architecture based on an improved YOLOv5 framework. First, the backbone framework of Real-Time Models for object Detection (RTMDet) is introduced. The core module, Cross-Stage Partial Layer (CSPLayer), includes a large convolution kernel, which allows the detection network to precisely capture contextual information more comprehensively. Furthermore, a common convolution layer is added to the stem layer, to extract more valuable information from the images efficiently. Then, the BoT3 module with the multi-head self-attention (MHSA) mechanism is added into the neck module of YOLOv5, such that the detection network has a better effect in scenes with dense targets and the detection accuracy is further improved. The introduction of the BoT3 module represents a key innovation of this paper. Finally, union dataset augmentation (UDA) is performed on the training set using the Minimal Color Loss and Locally Adaptive Contrast Enhancement (MLLE) image augmentation method, and the result is used as the input to the improved YOLOv5 framework. Experiments on the underwater datasets URPC2019 and URPC2020 show that the proposed framework not only alleviates the interference of underwater image degradation, but also makes the mAP@0.5 reach 79.8% and 79.4% and improves the mAP@0.5 by 3.8% and 1.1%, respectively, when compared with the original YOLOv8 on URPC2019 and URPC2020, demonstrating that the proposed framework presents superior performance for the high-precision detection of marine organisms.

3.
Molecules ; 26(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576926

RESUMO

Novel UV-curable polyurethane acrylate (PUA) resins were developed from rubber seed oil (RSO). Firstly, hydroxylated rubber seed oil (HRSO) was prepared via an alcoholysis reaction of RSO with glycerol, and then HRSO was reacted with isophorone diisocyanate (IPDI) and hydroxyethyl acrylate (HEA) to produce the RSO-based PUA (RSO-PUA) oligomer. FT-IR and 1H NMR spectra collectively revealed that the obtained RSO-PUA was successfully synthesized, and the calculated C=C functionality of oligomer was 2.27 per fatty acid. Subsequently, a series of UV-curable resins were prepared and their ultimate properties, as well as UV-curing kinetics, were investigated. Notably, the UV-cured materials with 40% trimethylolpropane triacrylate (TMPTA) displayed a tensile strength of 11.7 MPa, an adhesion of 2 grade, a pencil hardness of 3H, a flexibility of 2 mm, and a glass transition temperature up to 109.4 °C. Finally, the optimal resin was used for digital light processing (DLP) 3D printing. The critical exposure energy of RSO-PUA (15.20 mJ/cm2) was lower than a commercial resin. In general, this work offered a simple method to prepare woody plant oil-based high-performance PUA resins that could be applied in the 3D printing industry.


Assuntos
Acrilatos/química , Gorduras Insaturadas/química , Poliuretanos/química , Impressão Tridimensional , Géis/química , Dureza , Hidroxilação , Espectroscopia de Ressonância Magnética , Resinas Sintéticas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Raios Ultravioleta
4.
Opt Express ; 25(7): 7749-7760, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380894

RESUMO

Reactive sputtering with a mixture of argon and nitrogen (N2 partial pressure of 4%, 8%, and 15%) as the working gas is used to develop the high reflectance Pd/B4C multilayers for soft X-ray region application. Compared to the pure Ar fabricated sample, the interface roughness of the nitridated multilayer is slightly increased while the compressive stress is essentially relaxed from -623 MPa (pure Ar) to -85 MPa (15% N2). A maximum reflectance of 32% is measured at the wavelength of 9.5 nm for the multilayer fabricated with 15% N2. After storing the multilayers in an air environment for 6-17 months, a distinct aging effect is observed on the nitridated samples. The transmission electron microscopy results indicate that a large part of the top layers of the nitridated samples is deteriorated with severe interdiffusion, essential decrease in d-spacing, and compacted multilayer structure. The deterioration is less pronounced for the multilayers fabricated with a higher ratio of N2. Energy dispersive X-ray spectroscopy reveals that the concentration of nitrogen and boron in the degraded area is much reduced compared to the intact layers. A primitive model of upward diffusion of nitrogen and boron is proposed to explain the aging effects of the nitridated structure.

5.
Opt Express ; 24(14): 15620-30, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410835

RESUMO

Low stress W/Si multilayer mirrors are demanded in the hard X-ray telescopes to achieve the high angular resolution. To reduce the stress of the as-deposited multilayer and maintain a high reflectivity, two groups of low-temperature annealing experiments were performed on the periodic multilayers with a d-spacing of ~3.8 nm. The temperature-dependent experiments show that the 150 °C annealing can slightly increase the reflectivity while the stress reduced only by 24%. Higher temperature annealing induced a larger reduction of the stress and the multilayer reached an almost zero stress state at 250 °C. The stress relaxation was accompanied by a small drop of reflectivity of ≤5% and a period compaction of <0.02 nm. The time-dependent experiments indicate that most of the stress changes occurred within the first 10 minutes while a prolonged annealing is not useful. The X-ray scattering and transmission electron microscopy were further used to study the microstructure changes of the multilayers. It is found that the W/Si multilayer exhibits an amorphous structure before and after annealing, while an enhanced diffusion and intermixing is the main reason for the stress relaxation and structure changes.

6.
Adv Colloid Interface Sci ; 325: 103100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330882

RESUMO

Synthetic polymers, particularly polyurethanes (PUs), have revolutionized bioengineering and biomedical devices due to their customizable mechanical properties and long-term stability. However, the inherent hydrophobic nature of PU surfaces arises common issues such as high friction, strong protein adsorption, and thrombosis, especially in the physiological environment of blood contact. To overcome these issues, researchers have explored various modification techniques to improve the surface biofunctionality of PUs. In this review, we have systematically summarized several typical surface modification methods including surface plasma modification, surface oxidation-induced grafting polymerization, isocyanate-based chemistry coupling, UV-induced surface grafting polymerization, adhesives-assisted attachment strategy, small molecules-bridge grafting, solvent evaporation technique, and hydrogen bonding interaction. Correspondingly, the advantages, limitations, and future prospects of these surface modification methods were discussed. This review provides an important guidance or tool for developing surface functionalized PUs in the fields of bioengineering and medical devices.

7.
ACS Appl Electron Mater ; 6(1): 550-558, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38283377

RESUMO

The past decade has seen a rapid development in metal halide perovskite nanocrystals (NCs), which has been witnessed by their potential applications in nanotechnology. The inimitable chemical nature behind their unique photoluminescence characteristics has attracted a growing body of researchers. However, the low intrinsic stability and surface defects of perovskite NCs have hampered their widespread applications. Therefore, numerous techniques such as doping and encapsulation (polymer matrices, silica coating, salt matrix, etc.) have been examined for the surface modification of perovskite NCs and to increase their efficiency and stability. In this study, we demonstrated the self-passivation method for surface defects by introducing potassium (K) or rubidium (Rb) during the colloidal fabrication of NCs, resulting in the much-improved crystallinity, photoluminescence, and improved radiative efficiency. In addition, K-doped NCs showed a long-term colloidal stability of more than 1 month, which indicates the strong bonding between the NCs and the smaller-sized potassium cations (K+). We observed the enhancement of the radiative lifetime that can also be explained by the prevention of "Frenkel defects" when K+ stays at the interstitial site of the nanocrystal structure. Furthermore, our current findings signify the importance of surface modification techniques using alkali metal ions to reduce the surface traps of perovskite nanocrystals (PeNCs). Comparable developments could be applied to polycrystalline perovskite thin films to reduce the interface trap densities. The findings of this study have several important implications for future light-emitting applications.

8.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903097

RESUMO

In this study, functional graphene oxide (f-GO) nanosheets were prepared to enhance the NO2 resistibility of room-temperature-vulcanized (RTV) silicone rubber. A nitrogen dioxide (NO2) accelerated aging experiment was designed to simulate the aging process of nitrogen oxide produced by corona discharge on a silicone rubber composite coating, and then electrochemical impedance spectroscopy (EIS) was used to test the process of conductive medium penetration into silicone rubber. After exposure to the same concentration (115 mg·L-1) of NO2 for 24 h, at an optimal filler content of 0.3 wt.%, the impedance modulus of the composite silicone rubber sample was 1.8 × 107 Ω·cm2, which is an order of magnitude higher than that of pure RTV. In addition, with an increase in filler content, the porosity of the coating decreases. When the content of the nanosheet increases to 0.3 wt.%; the porosity reaches a minimum value 0.97 × 10-4%, which is 1/4 of the porosity of the pure RTV coating, indicating that this composite silicone rubber sample has the best resistance to NO2 aging.

9.
Materials (Basel) ; 16(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005068

RESUMO

In this study, the aging process of a surface-functional titanium dioxide nanosheet (f-TNS) composited room-temperature-vulcanized silicone rubber (RTV) composite coating was simulated in a NO2 generation device, and then the electrochemical impedance spectroscopy (EIS) of the aged composite coating was tested in a 3.5% NaCl solution. The water permeation process was analyzed by the changes in the impedance modulus, porosity, and breakpoint frequency of the composite coating. The experimental results show that the water permeability of aged RTV decreases first and then increases with the increase in the composite proportion of f-TNS. When the composite proportion of TNS was 0.3 wt.%, the composite sample had the minimum water permeability and the best resistance to NO2 corrosion. The effect of TNS on the NO2 aging resistance of RTV composites and its mechanism were studied by SEM, FT-IR, and XPS. The impedance modulus and porosity of the aged 0.3% f-TNS/RTV, respectively, were 1.82 × 107 Ω cm2 and 0.91 × 10-4%, which increased by 2.23 times and decreased by 0.37 times, respectively, compared with the values of aged pure RTV sample. In addition, the breakpoint frequency of the aged 0.3% f-TNS/RTV also significantly reduced to 11.3 Hz, whereas it was 35 Hz in aged pure RTV.

10.
Environ Sci Pollut Res Int ; 30(55): 117591-117608, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872329

RESUMO

Previous studies mainly focus on the game analysis of green building development under carbon tax policy, while carbon trading, as one of the important means to promote low-carbon development, is rarely mentioned in promoting the development of the green building market. Based on this, to study the impact of carbon trading policy on the development of the green building market, this study combines prospect theory for carbon trading to build a three-way evolutionary game model of developer-government-consumer. It studies the influencing causes of green building market development under the carbon trading mechanism from the whole perspective. The study shows the existence of a carbon trading policy helps the development of the green building market. In the presence of a carbon trading market, the government's punishment, subsidies, and the setting of carbon prices influence the development of the green building market. In addition, the percentage of carbon emissions bought, the potential benefits, and the selling price also affect the chance of consumers buying green buildings to a greater or lesser extent. This study introduces prospect theory into the developer-government-consumer three-way evolutionary game model, which enriches the research perspective of each subject's behavior in the green building market. It provides theoretical support for developers, governments, and consumers to collaborate to promote the coordination and development of the green building market. It has policy implications for promoting the green and high-quality development of the construction industry.


Assuntos
Carbono , Indústria da Construção , Carbono/análise , Simulação por Computador , Políticas , Comportamento do Consumidor , China
11.
Sci Adv ; 8(38): eabq8629, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149951

RESUMO

Semiconductors in their optical-fiber forms are desirable. Single-crystal organometallic halide perovskites have attractive optoelectronic properties and therefore are suitable fiber-optic platforms. However, single-crystal organometallic perovskite optical fibers have not been reported before due to the challenge of one-directional single-crystal growth in solution. Here, we report a solution-processed approach to continuously grow single-crystal organometallic perovskite optical fibers with controllable diameters and lengths. For single-crystal MAPbBr3 (MA = CH3NH3+) perovskite optical fiber made using our method, it demonstrates low transmission losses (<0.7 dB/cm), mechanical flexibilities (a bending radius down to 3.5 mm), and mechanical deformation-tunable photoluminescence in organometallic perovskites. Moreover, the light confinement provided by our organometallic perovskite optical fibers leads to three-photon absorption (3PA), in contrast with 2PA in bulk single crystals under the same experimental conditions. The single-crystal organometallic perovskite optical fibers have the potential in future optoelectronic applications.

12.
ACS Appl Mater Interfaces ; 14(18): 21356-21362, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471822

RESUMO

All-inorganic perovskite CsPbCl3 has recently attracted considerable attention due to its great potentials for the development of high-efficiency, deep-blue optoelectronic devices. Particularly, single-crystalline CsPbCl3 planar microstructures provide good platforms for both fundamental studies and nanophotonics applications from lasers and detectors to amplifiers. In this study, we report an ultrafast antisolvent deposition route to fabricate single-crystalline CsPbCl3 microplatelets (MPs). The as-grown MPs exhibit uniform morphology, strong emission, and outstanding gain property. Room temperature photoluminescence lasing is realized at 428 nm with a low threshold of 11.5 µJ cm-2 and high net optical gain up to 720 cm-1. These findings advance fundamental understanding on the fabrication and optoelectronic applications of low-dimensional CsPbCl3 perovskite structures.

13.
Polymers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971913

RESUMO

Novel oil-based epoxy acrylate (EA)-like prepolymers were synthesized via the ring-opening reaction of epoxidized plant oils with a new unsaturated carboxyl acid precursor (MAAMA) synthesized by reacting maleic anhydride (MA) with methallyl alcohol (MAA). Since the employed epoxidized oils including epoxidized soybean oil (ESO), epoxidized rubber seed oil (ERSO), and epoxidized wilsoniana seed oil (EWSO) possessed epoxy values of 7.34-4.38%, the obtained epoxy acrylate (EA)-like prepolymers (MMESO, MMERSO, and MMEWSO) indicated a C=C functionality of 7.81-4.40 per triglyceride. Furthermore, effects of the C=C functionality and the addition of hydroxyethyl methacrylate (HEMA) diluent on the ultimate properties of the resulting UV-cured EA-like materials were investigated and compared with those of commercially available acrylated ESO (AESO) resins. As the C=C functionality increased, the storage modulus at 25 °C (E'25), glass transition temperature (Tg), 5% weight-loss temperature (T5), tensile strength and modulus (σ and E), and hardness of the coating for both the pure EA and EA/HEMA resins increased significantly as well. These properties indicated similar trends when comparing the EA materials with 30% of HEMA with those pure EA materials. Specially, although ERSO had a clearly lower epoxy value that ESO, both the UV-cured pure MMERSO and MMERSO/HEMA materials showed much better E'25, Tg, σ, and E than their AESO counterparts, indicating that the MAAMA modification of epoxidized plant oils was much more effective than the modification of acrylic acid to achieve high-performance oil-based epoxy acrylate resins.

14.
ACS Nano ; 14(9): 11029-11039, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32852190

RESUMO

Semiconductor surface patterning at the nanometer scale is crucial for high-performance optical, electronic, and photovoltaic devices. To date, surface nanostructures on organic-inorganic single-crystal perovskites have been achieved mainly through destructive methods such as electron-beam lithography and focused ion beam milling. Here, we present a solution-based epitaxial growth method for creating nanopatterns on the surface of perovskite monocrystalline thin films. We show that high-quality monocrystalline arbitrary nanopatterns can form in solution with a low-cost simple setup. We also demonstrate controllable photoluminescence from nanopatterned perovskite surfaces by adjusting the nanopattern parameters. A seven-fold enhancement in photoluminescence intensity and a three-time reduction of the surface radiative recombination lifetime are observed at room temperature for nanopatterned MAPbBr3 monocrystalline thin films. Our findings are promising for the cost-effective fabrication of monocrystalline perovskite on-chip electronic and photonic circuits down to the nanometer scale with finely tunable optoelectronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA