Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(12): 3228-3233, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265099

RESUMO

Electrical coupling between excitatory neurons in the neocortex is developmentally regulated. It is initially prominent but eliminated at later developmental stages when chemical synapses emerge. However, it remains largely unclear whether early electrical coupling networks broadly contribute to neocortical circuit formation and animal behavior. Here, we report that neonatal electrical coupling between neocortical excitatory neurons is critical for proper neuronal development, synapse formation, and animal behavior. Conditional deletion of Connexin 26 (CX26) in the superficial layer excitatory neurons of the mouse neocortex around birth significantly reduces spontaneous firing activity and the frequency and size of spontaneous network oscillations at postnatal day 5-6. Moreover, CX26-conditional knockout (CX26-cKO) neurons tend to have simpler dendritic trees and lower spine density compared with wild-type neurons. Importantly, early, but not late, postnatal deletion of CX26, decreases the frequency of miniature excitatory postsynaptic currents (mEPSCs) in both young and adult mice, whereas miniature inhibitory postsynaptic currents (mIPSCs) were unaffected. Furthermore, CX26-cKO mice exhibit increased anxiety-related behavior. These results suggest that electrical coupling between excitatory neurons at early postnatal stages is a critical step for neocortical development and function.


Assuntos
Ansiedade/etiologia , Ansiedade/metabolismo , Conexina 26/genética , Conexina 26/metabolismo , Neocórtex/metabolismo , Neocórtex/fisiopatologia , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Ansiedade/psicologia , Comportamento Animal , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Deleção de Genes , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Gravidez
2.
Front Plant Sci ; 13: 1015095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311076

RESUMO

The oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) can feed on the leaves of many crops, resulting in vast areas of damage and severe losses. Therefore, this insect has become a significant agricultural pest in north Asia. In this study, we fed 3rd instar larvae with artificial diets containing different concentrations of chlorogenic acid and found a significant lethal effect and the mortality increased with increasing chlorogenic acid concentration. Next, we measured the sublethal effect of chlorogenic acid at LC20 on the growth and development of M. separata larvae. The durations of the 4th and 5th instar were longer than those of the control group (prolonged by 0.8 and 0.6 days, respectively), and the 6th instar was shorter (by 1.1 days). The total survival rate, pupation rate, eclosion rate, sex ratio, and oviposition amount in the LC20 chlorogenic acid-treated group were significantly lower than those in the control group. Furthermore, transcriptome analysis of 3rd instar larvae fed various concentrations of chlorogenic acid revealed that several MsCYP450 genes were significantly up-regulated, and this finding was further validated by qRT-PCR. In addition, various concentrations of chlorogenic acid and different treatment times significantly affected the enzyme activity of CYP450 in 3rd instar larvae. Importantly, dietary ingestion of dsMsCYP450 significantly reduced the mRNA level of MsCYP450 genes and increased mortality in the presence of chlorogenic acid. Our results revealed that MsCYP6B6, MsCYP321A7, and MsCYP6B7-like play an essential role in the detoxification of chlorogenic acid by M. separata. This study provides evidence of control effect by botanical insecticide chlorogenic acid on M. separata, and potential detoxification mechanism mediated by P450 of botanical insecticide in arthropods.

3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 26(6): 595-8, 2008 Dec.
Artigo em Zh | MEDLINE | ID: mdl-19186849

RESUMO

OBJECTIVE: To study the biocompatibility of Ti-24Nb-4Zr-7.9Sn (TNZS) ahoy treated with micro-arc oxidation (MAO). METHODS: The tibia bones of New Zealand rabbits were used to build the animal model. TNZS and MAO-TNZS samples were implanted into one side of tibia, pure titanium samples were implanted into the other side as control. After 4 and 26 weeks, radiographs and HE staining technique was used to observe the dynamic remodeling process of bone-implant interface. RESULTS: As the cure time increased, it was showed well biocompatibility of all implants. X-ray indicated that there was no permeable area produced around the three different materials at each time point. The density of bone matrix and arrangement of bone trabecula was almost the same as in the host bone. It was revealed by histological examination that the MAO-TNZS greatly prompted the bonding ability between implant and surrounding hard tissues. Four weeks after implantation, fine attachment was found at the bone-implant interface of all the implants and the fibrous tissue at the interface was gradually remodeled to form new bone. Twenty-six weeks later, MAO-TNZS showed that a biological fixation was created between bone and oxidation layer, while a layer of fibers formed between non-coated TNZS and titanium implants surrounding bone. CONCLUSION: The Ti-24Nb-4Zr-7.9Sn after treated with micro-arc oxidation shows good biocompatibility and can stimulate the bone growth in the bone-implant region, which provides support for clinical usage tests of TNZS alloy as implant after treated with micro-arc oxidation.


Assuntos
Propriedades de Superfície , Titânio , Ligas , Animais , Osso e Ossos , Oxirredução , Próteses e Implantes , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA