Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387281

RESUMO

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Associados a Tumor , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio , RNA Interferente Pequeno/genética , Proliferação de Células , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL22/farmacologia , Quimiocina CCL22/uso terapêutico
2.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999994

RESUMO

Quinoa is a nutritious crop that is tolerant to extreme environmental conditions; however, low-temperature stress can affect quinoa growth, development, and quality. Considering the lack of molecular research on quinoa seedlings under low-temperature stress, we utilized a Weighted Gene Co-Expression Network Analysis to construct weighted gene co-expression networks associated with physiological indices and metabolites related to low-temperature stress resistance based on transcriptomic data. We screened 11 co-expression modules closely related to low-temperature stress resistance and selected 12 core genes from the two modules that showed the highest associations with the target traits. Following the functional annotation of these genes to determine the key biological processes and metabolic pathways involved in low-temperature stress, we identified four important transcription factors involved in resistance to low-temperature stress: gene-LOC110731664, gene-LOC110736639, gene-LOC110684437, and gene-LOC110720903. These results provide insights into the molecular genetic mechanism of quinoa under low-temperature stress and can be used to breed lines with tolerance to low-temperature stress.


Assuntos
Chenopodium quinoa , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Plântula , Chenopodium quinoa/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Temperatura Baixa , Resposta ao Choque Frio/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Genes de Plantas
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 763-769, 2024 Feb.
Artigo em Zh | MEDLINE | ID: mdl-38621880

RESUMO

This study aims to investigate the effect of Erchen Decoction(ECD) on liver mitochondrial function in mice with a high-fat diet and its possible mechanism. A total of sixty C57BL/6J mice were randomly divided into a normal group, high-fat group, ECD group, mTORC1 activator(MHY) group, ECD+MHY group, and polyene phosphatidyl choline(PPC) group, with 10 rats in each group. The normal group was given a normal diet, and the other groups were fed a high-fat diet for 20 weeks. At the 17th week, the ECD group and ECD+MHY group were given ECD(8.7 g·kg~(-1)) daily, and the PPC group was given PPC(0.18 g·kg~(-1)) daily, while the remaining groups were given normal saline(0.01 mL·g~(-1)) daily for four weeks. In the 19th week, the MHY group and ECD+MHY group were injected intraperitoneally with MHY(5 mg·kg~(-1)) every other day for two weeks. During the experiment, the general conditions of the mice were observed. The contents of triglyceride(TG) and total cholesterol(TC) in serum were measured. Morphological changes in liver tissue were examined through HE and oil red O staining. The content of adenosine triphosphate(ATP) was determined using chemiluminescence, and mitochondrial membrane potential was assessed using a fluorescence probe(JC-1). Western blot was performed to detect the expression of rapamycin target protein complex 1(mTOR1), ribosomal protein S6 kinase B1(S6K), sterol regulatory element binding protein 1(SREBP1), and caveolin 1(CAV1). RESULTS:: revealed that compared with the normal group, the mice in the high-fat group exhibited significant increases in body weight and abdominal circumference(P<0.01). Additionally, there were significant increases in TG and TC levels(P<0.01). HE and oil red O staining showed that the boundaries of hepatic lobules were unclear; hepatocytes were enlarged, round, and irregularly arranged, with obvious lipid droplet deposition and inflammatory cell infiltration. The liver ATP content and mitochondrial membrane potential decreased significantly(P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 increased significantly(P<0.01), while the expression of CAV1 decreased significantly(P<0.01). Compared with the high-fat group, the body weight and TG content of mice in the ECD group and PPC group decreased significantly(P<0.05). Improvements were observed in hepatocyte morphology, lipid deposition, and inflammatory cell infiltration. Furthermore, there were significant increases in ATP content and mitochondrial membrane potential(P<0.05 or P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly in the ECD group(P<0.01), while CAV1 expression increased significantly(P<0.01). However, the indices mentioned above did not show improvement in the MHY group. When the ECD+MHY group was compared with the MHY group, there were significant reductions in body weight and TG contents(P<0.05). The morphological changes of hepatocytes, lipid deposition, and inflammatory cell infiltration were recovered. Moreover, there were significant increases in liver ATP content and mitochondrial membrane potential(P<0.05 or P<0.05). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly(P<0.01), while CAV1 expression increased significantly(P<0.01). In conclusion, ECD can improve mitochondrial function by regulating the mTORC1/SREBP1/CAV1 pathway. This mechanism may be involved in the resolution of phlegm syndrome and the regulation of lipid metabolism.


Assuntos
Compostos Azo , Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos/metabolismo , Peso Corporal , Trifosfato de Adenosina/farmacologia
4.
Immunology ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204242

RESUMO

Systemic immune activation and excessive inflammatory response, induced by intestinal barrier damage, are the major characteristics of inflammatory bowel disease (IBD). Excessive apoptotic cell accumulation leads to the production of a large number of inflammatory factors, further aggravating IBD development. Gene set enrichment analysis data showed that the homodimeric erythropoietin receptor (EPOR) was highly expressed in the whole blood of patients with IBD. EPOR is specifically expressed in intestinal macrophages. However, the role of EPOR in IBD development is unclear. In this study, we found that EPOR activation significantly alleviated colitis in mice. Furthermore, in vitro, EPOR activation in bone marrow-derived macrophage (BMDMs) promoted microtubule-associated protein 1 light chain 3B (LC3B) activation and mediated the clearance of apoptotic cells. Moreover, our data showed that EPOR activation facilitated the expression of phagocytosis- and tissue-repair-related factors. Our findings suggest that EPOR activation in macrophages promotes apoptotic cell clearance, probably via LC3B-associated phagocytosis (LAP), providing a new mechanism for understanding pathological progression and a novel potential therapeutic target for colitis.

5.
New Phytol ; 233(3): 1257-1273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775618

RESUMO

The mechanisms underlying plant tolerance to boron (B) excess are far from fully understood. Here we characterized the role of the miR397-CsiLAC4/CsiLAC17 (from Citrus sinensis) module in regulation of B flow. Live-cell imaging techniques were used in localization studies. A tobacco transient expression system tested modulations of CsiLAC4 and CsiLAC17 by miR397. Transgenic Arabidopsis were generated to analyze the biological functions of CsiLAC4 and CsiLAC17. CsiLAC4's role in xylem lignification was determined by mRNA hybridization and cytochemistry. In situ B distribution was analyzed by laser ablation inductively coupled plasma mass spectrometry. CsiLAC4 and CsiLAC17 are predominantly localized in the apoplast of tobacco epidermal cells. Overexpression of CsiLAC4 in Arabidopsis improves the plants' tolerance to boric acid excess by triggering high-B-dependent lignification of the vascular system's cell wall and reducing free B content in roots and shoots. In Citrus, CsiLAC4 is expressed explicitly in the xylem parenchyma and is modulated by B-responsive miR397. Upregulation of CsiLAC4 in Citrus results in lignification of the xylem cell walls, restricting B flow from xylem vessels to the phloem. CsiLAC4 contributes to plant tolerance to boric acid excess via high-B-dependent lignification of cell walls, which set up a 'physical barrier' preventing B flow.


Assuntos
Arabidopsis , Citrus , Arabidopsis/genética , Arabidopsis/metabolismo , Boro/metabolismo , Parede Celular/metabolismo , Citrus/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
6.
Mol Carcinog ; 60(2): 113-124, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283357

RESUMO

The clinical therapeutic efficacy toward esophageal squamous cell carcinoma (ESCC) is undesirable, due to the lack of targeted agents. Focal adhesion kinase (FAK), a nonreceptor tyrosine kinase involved in multiple fields of tumorigenesis, recently has been indicated as a promising therapeutic target in ESCC treatment. Here, we revealed that defactinib, a specific FAK inhibitor, effectively suppressed the malignancy of ESCC cells. Mechanistically, defactinib dose and time-dependently induced the dissociation of phosphoinositide-3-kinase (PI3K) from FAK, resultantly led to blockade of protein kinase B (AKT) signaling, and the expression of several oncogenes, such as SOX2, MYC, EGFR, MET, MDM2, or TGFBR2, identified by microarray and real-time polymerase chain reaction assay. Specifically, this FAK inhibition-mediated suppression of PI3K/AKT signaling and downstream ESCC specific biomarkers was maintained to 24 h in in vitro experiments to guarantee the treatment durability and efficacy. Importantly, defactinib suppressed tumor growth, metastatic ability, and increased overall survival of xenografted animals without producing significantly systematic toxicity. Our data suggest that FAK inhibition provides an excellent targeted therapy toward ESCC by effectively inhibiting PI3K/AKT pathway and downstream molecular network.


Assuntos
Benzamidas/farmacologia , Carcinoma de Células Escamosas/prevenção & controle , Neoplasias Esofágicas/prevenção & controle , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Redes Reguladoras de Genes/efeitos dos fármacos , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Benzamidas/química , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/química , Sulfonamidas/química
7.
Mol Carcinog ; 60(7): 481-496, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018249

RESUMO

c-Hepatocyte growth factor receptor (Met) inhibitors have demonstrated clinical benefits in some types of solid tumors. However, the efficacy of c-Met inhibitors in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we discovered that c-Met inhibitors induced "Signal Transducer and Activator of Transcription (STAT3)-addiction" in ESCC cells, and the feedback activation of STAT3 in ESCC cells limits the tumor response to c-Met inhibition. Mechanistically, c-Met inhibition increased the autocrine of several cytokines, including CCL2, interleukin 8, or leukemia inhibitory factor, and facilitated the interactions between the receptors of these cytokines and Janus Kinase1/2 (JAK1/2) to resultantly activate JAKs/STAT3 signaling. Pharmacological inhibition of c-Met together with cytokines/JAKs/STAT3 axis enhanced cancer cells regression in vitro. Importantly, combined c-Met and STAT3 inhibitors synergistically suppressed tumor growth and promoted the apoptosis of tumor cells without producing systematic toxicity. These findings suggest that inhibition of the STAT3 feedback loop may augment the response to c-Met inhibitors via the STAT3-mediated oncogene addiction in ESCC cells.


Assuntos
Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Ácidos Aminossalicílicos/administração & dosagem , Ácidos Aminossalicílicos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzenossulfonatos/administração & dosagem , Benzenossulfonatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/mortalidade , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901819

RESUMO

Boron (B) toxicity in Citrus is a common physiological disorder leading to reductions in both productivity and quality. Studies on how Citrus roots evade B toxicity may provide new insight into plant tolerance to B toxicity. Here, using Illumina sequencing, differentially expressed microRNAs (miRNAs) were identified in B toxicity-treated Citrus sinensis (tolerant) and C. grandis (intolerant) roots. The results showed that 37 miRNAs in C. grandis and 11 miRNAs in C. sinensis were differentially expressed when exposed to B toxicity. Among them, miR319, miR171, and miR396g-5p were confirmed via 5'-RACE and qRT-PCR to target a myeloblastosis (MYB) transcription factor gene, a SCARECROW-like protein gene, and a cation transporting ATPase gene, respectively. Maintenance of SCARECROW expression in B treated Citrus roots might fulfill stem cell maintenance, quiescent center, and endodermis specification, thus allowing regular root elongation under B-toxic stress. Down-regulation of MYB due to up-regulation of miR319 in B toxicity-treated C. grandis roots might decrease the number of root tips, thereby dramatically changing root system architecture. Our findings suggested that miR319 and miR171 play a pivotal role in Citrus adaptation to long-term B toxicity by targeting MYB and SCARECROW, respectively, both of which are responsible for root growth and development.


Assuntos
Adaptação Biológica , Boro/metabolismo , Citrus/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/fisiologia , Boro/toxicidade , Citrus/classificação , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Fenótipo , Filogenia , Interferência de RNA
9.
BMC Complement Altern Med ; 15: 209, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138154

RESUMO

BACKGROUND: As we known, Traditional Chinese Medicine (TCM) helps to prevent the relapse of drug addiction. However, the scientific basis of TCM remains unclear because of limitations of current reductionist approaches. We aimed to explore the possible mechanism of how ANKK1 TaqIA (A1/A2) [rs1800497(T/C)] affects the relapse of opioid addiction on the perspective of Chinese traditional medicine. METHODS: The ANKK1 TaqIA (A1/A2) [rs1800497(T/C)] of the dopamine D2 receptor (DRD2) polymorphisms were genotyped in a case-control sample consisting of 347 opioid addicts and 155 healthy controls with RT-PCR and the TCM pathological factors were collected by means of Syndrome Elements Differentiation in the case-control sample. RESULTS: DRD2/ANKK1 TaqIA Polymorphisms has no relation with opioid addiction relapse; but for those who were diagnosed with phlegm syndrome, DRD2/ANKK1 TaqIA Polymorphisms affect the replapse of apioid addiction (P < 0.05). CONCLUSIONS: DRD2/ANKK1 TaqIA is associated with opioid addict and it is obvious in opioid addicts who suffer from the phlegm syndrome.


Assuntos
Medicina Tradicional Chinesa , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Transtornos Relacionados ao Uso de Opioides/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Dopamina D2/genética , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Signal Transduct Target Ther ; 9(1): 21, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38280862

RESUMO

Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Transdução de Sinais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Poult Sci ; 103(7): 103757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697006

RESUMO

Stress is known to disrupt the intestinal barrier and induce intestinal dysfunction. A critical role for gonadotropin inhibitory hormone (GnIH) in stress has emerged. However, whether GnIH mediates stress-induced intestinal dysfunction remains unknown. The present study explored this question through in vivo and in vitro experiments in hens. Our in vivo experiments showed that continuous intraperitoneal injection of GnIH not only significantly increased the concentration of stress hormones in serum, but also significantly elevated the mRNA expression of glucocorticoid receptor (GR) in the duodenum and jejunum. Moreover, morphological and molecular analyses revealed that GnIH disrupted the physical and chemical barriers of the intestine and dramatically increased inflammatory factor levels in the intestine and serum of hens. Interestingly, the microbiomics results showed that GnIH altered the structure and composition of the gut flora in the cecum, revealing an increased abundance of harmful intestinal bacteria such as Desulfovibrionaceae. Similar results were found in in vitro studies in which the GnIH-induced intestinal mucosal barrier was disrupted, and inflammation increased in jejunal explants, although no significant difference was found in the expression of GR between the control and GnIH groups. Our results demonstrated that GnIH not only directly damaged intestinal barriers and elevated intestinal inflammation but also mediated stress and microflora imbalance-induced intestinal function disorder, suggesting that GnIH is a potential therapeutic target for gut dysfunction, stress-induced intestinal function disorder, and inflammatory bowel disease in animals and humans.


Assuntos
Galinhas , Microbioma Gastrointestinal , Estresse Fisiológico , Animais , Galinhas/fisiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/fisiopatologia , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Enteropatias/veterinária , Enteropatias/microbiologia
12.
Sci China Life Sci ; 66(6): 1245-1263, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36763244

RESUMO

Although Src is one of the oldest and most investigated oncoproteins, its function in tumor malignancy remains to be defined further. In this study, we demonstrated that the inhibition of Src activity by ponatinib effectively suppressed several malignant phenotypes of esophageal squamous cell carcinoma (ESCC) both in vitro and in vivo, whereas it did not produce growth-inhibitory effects on normal esophageal epithelial cells (NEECs). Importantly, we combined phosphoproteomics and several cellular and molecular biologic strategies to identify that Src interacted with the members of Src-family kinases (SFKs), such as Fyn or Lyn, to form heterodimers. Src interactions with Fyn and Lyn phosphorylated the tyrosine sites in SH2 (Fyn Tyr185 or Lyn Tyr183) and kinase domains (Fyn Tyr420 or Lyn Tyr397), which critically contributed to ESCC development. By contrast, Src could not form heterodimers with Fyn or Lyn in NEECs. We used RNA sequencing to comprehensively demonstrate that the inhibition of Src activity effectively blocked several critical tumor-promoting pathways, such as JAK/STAT, mTOR, stemness-related, and metabolism-related pathways. Results of the real-time polymerase chain reaction (RT-PCR) assay confirmed that Lyn and Fyn were critical effectors for the Src-mediated expression of tumor growth or metastasis-related molecules. Furthermore, results of the clinical ESCC samples showed that the hyperactivation of pSrc Tyr419, Fyn Tyr185 or Tyr420, and Lyn Tyr183 or Tyr397 could be biomarkers of ESCC prognosis. This study illustrates that Src/Fyn and Src/Lyn heterodimers serve as targets for the treatment of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo , Tirosina/metabolismo , Fosforilação
13.
Acta Pharm Sin B ; 13(2): 694-708, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873192

RESUMO

Stroma surrounding the tumor cells plays crucial roles for tumor progression. However, little is known about the factors that maintain the symbiosis between stroma and tumor cells. In this study, we found that the transcriptional regulator-signal transducer and activator of transcription 3 (Stat3) was frequently activated in cancer-associated fibroblasts (CAFs), which was a potent facilitator of tumor malignancy, and formed forward feedback loop with platelet-activating factor receptor (PAFR) both in CAFs and tumor cells. Importantly, PAFR/Stat3 axis connected intercellular signaling crosstalk between CAFs and cancer cells and drove mutual transcriptional programming of these two types of cells. Two central Stat3-related cytokine signaling molecules-interleukin 6 (IL-6) and IL-11 played the critical role in the process of PAFR/Stat3 axis-mediated communication between tumor and CAFs. Pharmacological inhibition of PAFR and Stat3 activities effectively reduced tumor progression using CAFs/tumor co-culture xenograft model. Our study reveals that PAFR/Stat3 axis enhances the interaction between tumor and its associated stroma and suggests that targeting this axis can be an effective therapeutic strategy against tumor malignancy.

14.
Microbiome ; 11(1): 248, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936242

RESUMO

BACKGROUND: Perioperative neurocognitive disorders (PND) are the most common postoperative complications with few therapeutic options. Gut microbial dysbiosis is associated with neurological diseases; however, the mechanisms by which the microbiota regulates postoperative gastrointestinal and cognitive function are incompletely understood. METHODS: Behavioral testing, MiSeq 16S rRNA gene sequencing, non-target metabolism, intestinal permeability detection, protein assays, and immunofluorescence staining were employed to discern the impacts of surgery on microbial profiles, intestinal barriers, serum metabolism, and the brain. Interventions in mice included fecal microbiota transplantation, the anti-inflammatory agent dexamethasone, Lactobacillus supplementation, indole propionic acid supplementation, and palmitic amide administration. RESULTS: Surgery-induced cognitive impairment occurs predominantly in aged mice, and surgery-induced alterations in the microbiota composition profile exacerbate intestinal barrier disruption in aged mice. These adverse effects can be mitigated by transferring microbiota from young donors or by bolstering the intestinal barrier function using dexamethasone, Lactobacillus, or indole propionic acid. Moreover, microbiota composition profiles can be restored by transplanting feces from young mice to aged surgical mice, improving neuropathology and cognitive function, and these effects coincide with increased intestinal permeability. Metabolomic screening identified alterations in metabolites in mouse serum after surgery, especially the increase in palmitic amide. Palmitic amide levels in serum and brain can be decreased by transplanting feces from young mice to aged surgical mice. Oral palmitic amide exacerbates cognitive impairment and neuropathological changes in mice. CONCLUSIONS: Gut microbial dysbiosis in mice after surgery is a key mechanism leading to cognition dysfunction, which disrupts the intestinal barrier and metabolic abnormalities, resulting in neuroinflammation and dendritic spine loss. Intestinal barrier damage and high level of palmitic amide in old mice may be the cause of high incidence of PND in the elderly. Preoperative microbiota regulation and intestinal barrier restoration may be of therapeutic benefit in preventing PND. Video Abstract.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Animais , Camundongos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Disbiose/etiologia , Microbioma Gastrointestinal/genética , Indóis/farmacologia , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
15.
MedComm (2020) ; 4(6): e381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846367

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a frequently seen esophageal tumor type in China. Activation of signaling proteins and relevant molecular mechanisms in ESCC are partially explored, impairing the antitumor efficiency of targeted therapy in ESCC treatment. Tumor-associated macrophages (TAMs)-released C-C motif chemokine 22 (CCL22) can activate intratumoral focal adhesion kinase (FAK), thus promoting the progression of ESCC. Here, we demonstrated that highly secreted CCL22 by TAMs (CCL22-positive TAMs) induced ESCC cell stemness and invasion through facilitating transcriptional activity of intratumoral glioma-associated oncogene 1 (Gli1), a downstream effector for Hedgehog (HH) pathway. Mechanistically, FAK-activated protein kinase B (AKT) mediated Gli1 phosphorylation at its Ser112/Thr115/Ser116 sites and released Gli1 from suppressor of fused homolog, the endogenous inhibitor of Gli1 to activate downstream stemness-associated factors, such as SRY-box transcription factor 2 (SOX2), Nanog homeobox (Nanog), or POU class 5 homeobox (OCT4). Furthermore, inhibition of FAK activity by VS-4718, the FAK inhibitor, enhanced antitumor effect of GDC-0449, the HH inhibitor, both in xenografted models and in vitro assays. Clinically, CCL22/Gli1 axis is used to evaluate ESCC prognosis. Overall, our study establishes the communication of FAK with HH pathway and offers the novel mechanism related to Gli1 activation independent of Smoothened as well as the rationale for the anti-ESCC combination treatment.

16.
Cell Mol Immunol ; 19(9): 1054-1066, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35962191

RESUMO

Tumor cell dependence on activated oncogenes is considered a therapeutic target, but protumorigenic microenvironment-mediated cellular addiction to specific oncogenic signaling molecules remains to be further defined. Here, we showed that tumor-associated macrophages (TAMs) produced an abundance of C-C motif chemokine 22 (CCL22), whose expression in the tumor stroma was positively associated with the level of intratumoral phospho-focal adhesion kinase (pFAK Tyr397), tumor metastasis and reduced patient survival. Functionally, CCL22-stimulated hyperactivation of FAK was correlated with increased malignant progression of cancer cells. CCL22-induced addiction to FAK was demonstrated by the persistent suppression of tumor progression upon FAK-specific inhibition. Mechanistically, we identified that diacylglycerol kinase α (DGKα) acted as a signaling adaptor to link the CCL22 receptor C-C motif chemokine receptor 4 (CCR4) and FAK and promoted CCL22-induced activation of the FAK/AKT pathway. CCL22/CCR4 signaling activated the intracellular Ca2+/phospholipase C-γ1 (PLC-γ1) axis to stimulate the phosphorylation of DGKα at a tyrosine residue (Tyr335) and promoted the translocation of DGKα to the plasma membrane to assemble the DGKα/FAK signalosome, which critically contributed to regulating sensitivity to FAK inhibitors in cancer cells. The identification of TAM-driven intratumoral FAK addiction provides opportunities for utilizing the tumor-promoting microenvironment to achieve striking anticancer effects.


Assuntos
Quimiocina CCL22 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Quinase 1 de Adesão Focal , Linhagem Celular Tumoral , Quimiocina CCL22/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Microambiente Tumoral , Macrófagos Associados a Tumor
17.
Acta Pharm Sin B ; 11(1): 143-155, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532186

RESUMO

Among current novel druggable targets, protein-protein interactions (PPIs) are of considerable and growing interest. Diacylglycerol kinase α (DGKα) interacts with focal adhesion kinase (FAK) band 4.1-ezrin-radixin-moesin (FERM) domain to induce the phosphorylation of FAK Tyr397 site and promotes the malignant progression of esophageal squamous cell carcinoma (ESCC) cells. Chrysin is a multi-functional bioactive flavonoid, and possesses potential anticancer activity, whereas little is known about the anticancer activity and exact molecular mechanisms of chrysin in ESCC treatment. In this study, we found that chrysin significantly disrupted the DGKα/FAK signalosome to inhibit FAK-controlled signaling pathways and the malignant progression of ESCC cells both in vitro and in vivo, whereas produced no toxicity to the normal cells. Molecular validation specifically demonstrated that Asp435 site in the catalytic domain of DGKα contributed to chrysin-mediated inhibition of the assembly of DGKα/FAK complex. This study has illustrated DGKα/FAK complex as a target of chrysin for the first time, and provided a direction for the development of natural products-derived PPIs inhibitors in tumor treatment.

18.
Clin Transl Med ; 11(8): e472, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459125

RESUMO

Activation of cancer-associated fibroblasts (CAFs) is a crucial feature for tumor malignancy. The reciprocal interplay between tumor cells and CAFs not only facilitates tumor progression and metastasis but also sustains the tumor-promoting function of CAFs. Nevertheless, how tumor cells readily adapt to these functional CAFs is still unclear. NADPH oxidase 5 (NOX5) is a strong reactive oxygen species producer overexpressed in esophageal squamous cell carcinoma (ESCC) cells. In this study, we showed that NOX5-positive ESCC cells induced normal fibroblasts (NFs) or adipose-derived mesenchymal stem cells (MSCs) to express the marker of CAFs-α smooth muscle actin. Moreover, these tumor cells reprogrammed the cytokine profile of the activated CAFs, which further stimulated NFs or MSCs to CAFs and induced lymphangiogenesis to facilitate ESCC malignancy. NOX5 activated intratumoral Src/nuclear factor-κB signaling to stimulate secretion of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and lactate from tumor cells. Subsequently, TNF-α, IL-1ß, and lactate activated CAFs, and facilitated the secretion of IL-6, IL-7, IL-8, CCL5, and transforming growth factor-ß1 from CAFs. These CAFs-derived cytokines reciprocally induced the progression of NOX5-positive ESCC cells. Our findings together indicate that NOX5 serves as the driving oncoprotein to provide a niche that is beneficial for tumor malignant progression.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Citocinas/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , NADPH Oxidase 5/metabolismo , Animais , Citocinas/genética , Modelos Animais de Doenças , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Camundongos , NADPH Oxidase 5/genética , Transdução de Sinais/genética
19.
Signal Transduct Target Ther ; 5(1): 139, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792487

RESUMO

Reactive oxygen species (ROS) localized at the precise subcellular compartments are essential for regulating the activity of signaling proteins. Furthermore, ROS are master regulators of tumor malignant progression that respond to a diverse set of environmental stress, especially hypoxia. NADPH oxidases (NOXs) appear to be activated within discrete subcellular compartments to facilitate local ROS production. However, the subcellular function of NOXs in hypoxic tumor is still unclear. In this study, we demonstrated that NOX5 was greatly upregulated in clinical esophageal squamous cell carcinoma (ESCC) tumors, ESCC cell lines or primary ESCC cells, and elevated NOX5 was correlated to malignancy of ESCC tumors and poor prognosis. NOX5 induced the malignant progression of ESCC by activating Src, especially under hypoxic condition. Mechanistically, we showed that hypoxia promoted the interaction between NOX5 and Pyk2 on cell membrane via facilitating Ca2+-mediated Pyk2 Tyr402 site phosphorylation. Subsequently, Pyk2 acted as a scaffold for c-Abl phosphorylating the catalytic domain of NOX5 Tyr476/478 sites, which in turn upregulated hydrogen peroxide (H2O2) inside the Pyk2/NOX5 complex to oxidize and activate local Src. These findings provide insights into the biological significance of NOX5 in the development of ESCC.


Assuntos
Membrana Celular/enzimologia , Neoplasias Esofágicas/enzimologia , Carcinoma de Células Escamosas do Esôfago/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Feminino , Humanos , Camundongos , Camundongos Nus , NADPH Oxidase 5/genética , Oxirredução , Quinases da Família src/genética
20.
Neurosci Lett ; 738: 135313, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827575

RESUMO

Women are vulnerable to adverse stress events, especially during perimenopause. Substantial evidence has associated the impaired neuronal plasticity with abnormal behaviors under stressful conditions in animals. The Notch signaling pathway is critical for neuronal plasticity in the structure and function of brain areas. In this study, the mid-aged female rats were subjected to chronic restraint stress(CRS) in combination with isolated rearing for 6 weeks. The behavior tests and HPA activity were conducted to evaluate the model. The mRNA and protein levels of Notch1 signaling related genes in the hippocampus(HIP) and prefrontal cortex(PFC) were analyzed by RT-qPCR and western blotting. The promoter methylation levels were measured by bisulfite sequencing PCR analysis. CRS induced depression-like and anxiety-like behaviors in mid-aged stressed females, as shown by decreased locomotor activity, sucrose consumption and increased HPA activity. Moreover, after CRS, the rats exhibited decreased mRNA and protein levels in Jagged1, Notch1 and Hes5 in the HIP and Notch1, Hes1 and Hes5 in the PFC. However, there were no significant promotor methylation changes between the stressed and control female rats. These findings suggest that Notch1 signaling pathway may contribute to the behavioral changes following CRS in mid-aged female rats and the upstream cause of the gene expression changes needs to be further investigated.


Assuntos
Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Proteína Jagged-1/metabolismo , Ratos , Proteínas Repressoras/metabolismo , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA