Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 220: 115188, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592815

RESUMO

BACKGROUND: The ability to induce chronic inflammation and immunosuppression are two key characteristics of carcinogens and important forms of immunotoxicity. The National Toxicology Program (NTP) evaluated the immunotoxicity of two per- and polyfluoroalkyl substances (PFASs), PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate), in 2016. However, the potential pro-inflammatory and immunosuppressive effects of other PFASs remain largely uncharacterized. METHODS: We developed an expanded set of search terms pertaining to the chronic inflammatory and immunosuppressive effects of PFASs based on those of the International Agency for Research on Cancer (IARC) and NTP. To confirm searching effectiveness and scope, we compared our search term results with those of IARC and NTP for both PFASs and two other known carcinogens, chromium (VI) and benzene. Systematic evidence maps (SEMs) were also produced using Tableau to visualize the distribution of study numbers and types reporting immunotoxic effects and specific biomarkers elicited by PFAS exposures. RESULTS: In total, 1155 PFAS studies were retrieved, of which 321 qualified for inclusion in our dataset. Using our search terms, we identified a greater number of relevant studies than those obtained using IARC and NTP's search terms. From the SEM findings, increased cytokine production strengthened an association between PFAS exposure and chronic inflammation, and decreased B-cell activation and altered levels of T-cell subtypes and immunoglobulins confirmed PFAS-induced immunosuppression. CONCLUSION: Our SEM findings confirm that several PFASs commonly found in both in the environment, including those that are lesser-known, may induce immunosuppression and chronic inflammation, two key characteristics of carcinogens. This approach, including development of search terms, study screening process, data coding, and evidence mapping visualizations, can be applied to other key characteristics of chemical carcinogens.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Carcinógenos , Terapia de Imunossupressão
2.
Occup Environ Med ; 79(10): 717-720, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35504721

RESUMO

OBJECTIVES: There has been concern over the possible risk of autoimmune diseases from exposure to trichloroethylene (TCE), an industrial solvent and common pollutant near hazardous waste sites. Studies of TCE-exposed lupus-prone mouse strains have reported increases in serum antinuclear antibodies (ANAs), a marker of autoimmunity, and autoimmune pathologic changes, while epidemiologic studies have provided limited support for an association between TCE exposure and scleroderma. To investigate exposure-related biologic evidence of autoimmunity in humans, we measured ANA levels in sera from a cross-sectional study of TCE-exposed (n=80) and TCE-unexposed (n=96) workers in Guangdong, China. METHODS: Full-shift personal air exposure measurements for TCE were taken prior to blood collection. Serum ANAs were detected by immunofluorescence on HEp-2 cells. We calculated ORs and 95% CI relating levels of TCE exposure (categorised using tertiles as cut-points) and ANA positivity (1+ intensity at 1:320 dilution) using multivariable logistic regression. RESULTS: Samples from 16 of 176 participants were ANA-positive. We found higher levels of TCE exposure (concentrations>17.27 ppm) to be associated with an elevated odds of ANA positivity (OR 4.7, 95% CI 1.3 to 16.8) compared with unexposed controls. This association remained after excluding two subjects with diagnosed autoimmune disease (OR 4.5, 95% CI 1.2 to 16.2). We did not observe an association with ANAs at lower exposure levels. CONCLUSIONS: Our findings, to our knowledge the first direct human evidence of an association between TCE exposure and systemic autoimmunity, provide biologic plausibility to epidemiologic evidence relating TCE and autoimmune disease.


Assuntos
Doenças Autoimunes , Produtos Biológicos , Exposição Ocupacional , Tricloroetileno , Animais , Anticorpos Antinucleares , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/epidemiologia , Estudos Transversais , Humanos , Camundongos , Exposição Ocupacional/efeitos adversos , Tricloroetileno/efeitos adversos
3.
Carcinogenesis ; 42(11): 1326-1336, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606590

RESUMO

Benzene is a recognized hematotoxin and leukemogen; however, its mechanism of action in humans remain unclear. To provide insight into the processes underlying benzene hematotoxicity, we performed high-resolution metabolomic profiling of plasma collected from a cross-sectional study of 33 healthy workers exposed to benzene (median 8-h time-weighted average exposure; 20 ppma), and 25 unexposed controls in Shanghai, China. Metabolic features associated with benzene were identified using a metabolome-wide association study (MWAS) that tested for the relationship between feature intensity and benzene exposure. MWAS identified 478 mass spectral features associated with benzene exposure at false discovery rate < 20%. Comparison to a list of 13 known benzene metabolites and metabolites predicted using a multi-component biotransformation algorithm showed five metabolites were detected, which included the known metabolites phenol and benzene diolepoxide. Metabolic pathway enrichment identified 41 pathways associated with benzene exposure, with altered pathways including carnitine shuttle, fatty acid metabolism, sulfur amino acid metabolism, glycolysis, gluconeogenesis and branched chain amino acid metabolism. These results suggest disruption to fatty acid uptake, energy metabolism and increased oxidative stress, and point towards pathways related to mitochondrial dysfunction, which has previously been linked to benzene exposure in animal models and human studies. Taken together, these results suggest benzene exposure is associated with disruption of mitochondrial pathways, and provide promising, systems biology biomarkers for risk assessment of benzene-induced hematotoxicity in humans.


Assuntos
Benzeno/toxicidade , Células-Tronco Hematopoéticas/efeitos dos fármacos , Metaboloma , Exposição Ocupacional , Adulto , Biomarcadores/metabolismo , China , Aberrações Cromossômicas , Estudos Transversais , Feminino , Humanos , Masculino , Metabolômica/métodos , Mutagênicos/toxicidade
4.
Arch Toxicol ; 95(2): 693-701, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33084937

RESUMO

Formaldehyde (FA), an economically important and ubiquitous chemical, has been classified as a human carcinogen and myeloid leukemogen. However, the underlying mechanisms of leukemogenesis remain unclear. Unlike many classical leukemogens that damage hematopoietic stem/progenitor cells (HSC/HPC) directly in the bone marrow, FA-as the smallest, most reactive aldehyde-is thought to be incapable of reaching the bone marrow through inhalation exposure. A recent breakthrough study discovered that mouse lung contains functional HSC/HPC that can produce blood cells and travel bi-directionally between the lung and bone marrow, while another early study reported the presence of HSC/HPC in rat nose. Based on these findings, we hypothesized that FA inhalation could induce toxicity in HSC/HPC present in mouse lung and/or nose rather than in the bone marrow. To test this hypothesis, we adapted a commercially available protocol for culturing burst-forming unit-erythroid (BFU-E) and colony-forming unit-granulocyte, macrophage (CFU-GM) colonies from bone marrow and spleen to also enable culture of these colonies from mouse lung and nose, a novel application of this assay. We reported that in vivo exposure to FA at 3 mg/m3 or ex vivo exposure up to 400 µM FA decreased the formation of both colony types from mouse lung and nose as well as from bone marrow and spleen. These findings, to the best of our knowledge, are the first empirically to show that FA exposure can damage mouse pulmonary and olfactory HSC/HPC and provide potential biological plausibility for the induction of leukemia at the sites of entry rather than the bone marrow.


Assuntos
Formaldeído/toxicidade , Células-Tronco Hematopoéticas/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nariz/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Carcinógenos/toxicidade , Células Cultivadas , Exposição por Inalação , Leucemia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Organismos Livres de Patógenos Específicos , Baço/efeitos dos fármacos
5.
Occup Environ Med ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938756

RESUMO

OBJECTIVE: Recent evidence has accumulated that the immune system is intimately intertwined with cancer development. Two key characteristics of carcinogens in which the immune system plays a central role are chronic inflammation and immunosuppression. In this systematic review, we investigated the association of chronic inflammatory and immunosuppressive outcomes with benzene, a widely used industrial chemical. Benzene has been confirmed to cause acute myeloid leukaemia and suspected to cause non-Hodgkin lymphoma, two cancers of the blood-forming system that affect immune cells. METHODS: We systematically searched PubMed and Embase for all relevant studies using a combination of Medical Subject Headings (MeSH) and selected key words. The detailed review protocol, including search strategy, was registered with PROSPERO, the international prospective register of systematic reviews (#CRD42019138611). RESULTS: Based on all human studies selected in the final review, we report new evidence of a benzene-induced immunosuppressive effect on the adaptive immune system and activation of the innate immune system to cause inflammation. In particular, benzene significantly lowers the number of white blood cells, particularly lymphocytes such as CD4+ T-cells, B-cells and natural killer cells, and increases proinflammatory biomarkers at low levels of exposure. CONCLUSION: To the best of our knowledge, this is the first comprehensive review of benzene's immunotoxicity in humans. Based on results obtained from this review, we propose two potential immunotoxic mechanisms of how benzene induces leukaemia/lymphoma: (1) cancer invasion caused by proinflammatory cytokine production, and (2) cancer promotion via impaired immunosurveillance. Further studies will be required to confirm the connection between benzene exposure and its effects on the immune system.

6.
Occup Environ Med ; 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243757

RESUMO

OBJECTIVES: The US National Toxicology Program (NTP) recently recommended in its Report on Carcinogens Monograph for Antimony Trioxide that antimony trioxide be listed as 'reasonably anticipated to be a human carcinogen' based on sufficient evidence of carcinogenicity in experimental animals and supporting evidence from mechanistic studies. Our goal was to estimate the possible human cancer risk from occupational exposure to antimony trioxide. METHODS: We selected data from 2-year inhalation studies in male and female mice conducted by the NTP and performed cancer dose-response analyses using cancer models and benchmark dose methods developed by the US Environmental Protection Agency. In these analyses, we generated benchmark doses and cancer slope factors for antimony trioxide, and then estimated human cancer risk under various exposure scenarios. Typical and worst-case inhalation scenarios in multiple occupational settings were used in risk estimation. RESULTS: In typical case scenarios, the occupational cancer risk from antimony trioxide was estimated to be 0.025 (25 in 1000) for persons working with flame retardants in plastics and textiles for 40 years. Under worst-case scenarios, the occupational cancer risk was estimated to be 0.11 (110 in 1000) for persons working with flame retardants in plastics and textiles. At the current Occupational Safety and Health Administration Permissible Exposure Limit, the cancer risk for occupational inhalation exposure of antimony trioxide was estimated to be 0.096 (96 in 1000). CONCLUSION: The risk estimates calculated in this study suggest that exposure to antimony trioxide at levels present in certain occupational settings results in a large increase in the risk of developing cancer.

7.
Occup Environ Med ; 76(6): 376-381, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30971425

RESUMO

OBJECTIVES: The occupational exposure limit for trichloroethylene (TCE) in different countries varies from 1 to 100 ppm as an 8-hour time-weighted average (TWA). Many countries currently use 10 ppm as the regulatory standard for occupational exposures, but the biological effects in humans at this level of exposure remain unclear. The objective of our study was to evaluate alterations in immune and renal biomarkers among workers occupationally exposed to low levels of TCE below current regulatory standards. METHODS: We conducted a cross-sectional molecular epidemiology study of 80 healthy workers exposed to a wide range of TCE (ie, 0.4-229 ppm) and 96 comparable unexposed controls in China, and previously reported that TCE exposure was associated with multiple candidate biological markers related to immune function and kidney toxicity. Here, we conducted further analyses of all of the 31 biomarkers that we have measured to determine the magnitude and statistical significance of changes in the subgroup of workers (n=35) exposed to <10 ppm TCE compared with controls. RESULTS: Six immune biomarkers (ie, CD4+ effector memory T cells, sCD27, sCD30, interleukin-10, IgG and IgM) were significantly decreased (% difference ranged from -16.0% to -72.1%) and one kidney toxicity marker (kidney injury molecule-1, KIM-1) was significantly increased (% difference: +52.5%) among workers exposed to <10 ppm compared with the control group. These associations remained noteworthy after taking into account multiple comparisons using the false discovery rate (ie, <0.20). CONCLUSION: Our results suggest that occupational exposure to TCE below 10 ppm as an 8-hour TWA may alter levels of key markers of immune function and kidney toxicity.


Assuntos
Biomarcadores/análise , Tricloroetileno/efeitos adversos , Adulto , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/sangue , Biomarcadores/sangue , Ligante CD30/análise , Ligante CD30/sangue , Contagem de Linfócito CD4/métodos , China , Estudos Transversais , Feminino , Receptor Celular 1 do Vírus da Hepatite A/análise , Receptor Celular 1 do Vírus da Hepatite A/sangue , Humanos , Imunoglobulina G/análise , Imunoglobulina G/sangue , Imunoglobulina M/análise , Imunoglobulina M/sangue , Interleucina-10/análise , Interleucina-10/sangue , Masculino , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Tricloroetileno/sangue
8.
Environ Health ; 18(1): 2, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612564

RESUMO

BACKGROUND: Despite the growing and widespread use of glyphosate, a broad-spectrum herbicide and desiccant, very few studies have evaluated the extent and amount of human exposure. OBJECTIVE: We review documented levels of human exposure among workers in occupational settings and the general population. METHODS: We conducted a review of scientific publications on glyphosate levels in humans; 19 studies were identified, of which five investigated occupational exposure to glyphosate, 11 documented the exposure in general populations, and three reported on both. RESULTS: Eight studies reported urinary levels in 423 occupationally and para-occupationally exposed subjects; 14 studies reported glyphosate levels in various biofluids on 3298 subjects from the general population. Average urinary levels in occupationally exposed subjects varied from 0.26 to 73.5 µg/L; environmental exposure urinary levels ranged from 0.16 to 7.6 µg/L. Only two studies measured temporal trends in exposure, both of which show increasing proportions of individuals with detectable levels of glyphosate in their urine over time. CONCLUSIONS: The current review highlights the paucity of data on glyphosate levels among individuals exposed occupationally, para-occupationally, or environmentally to the herbicide. As such, it is challenging to fully understand the extent of exposure overall and in vulnerable populations such as children. We recommend further work to evaluate exposure across populations and geographic regions, apportion the exposure sources (e.g., occupational, household use, food residues), and understand temporal trends.


Assuntos
Exposição Ambiental/análise , Glicina/análogos & derivados , Herbicidas/urina , Glicina/urina , Humanos , Glifosato
9.
Int Arch Occup Environ Health ; 92(8): 1077-1085, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31161417

RESUMO

OBJECTIVES: The objective of our study was to evaluate the association between occupational exposure to trichloroethylene (TCE), a suspected lymphomagen, and serum levels of miRNAs in a cross-sectional molecular epidemiology study of TCE-exposed workers and comparable unexposed controls in China. METHODS: Serum levels of 40 miRNAs were compared in 74 workers exposed to TCE (median: 12 ppm) and 90 unexposed control workers. Linear regression models were used to test for differences in serum miRNA levels between exposed and unexposed workers and to evaluate exposure-response relationships across TCE exposure categories using a three-level ordinal variable [i.e., unexposed, < 12 ppm, the median value among workers exposed to TCE) and ≥ 12 ppm)]. Models were adjusted for sex, age, current smoking, current alcohol use, and recent infection. RESULTS: Seven miRNAs showed significant differences between exposed and unexposed workers at FDR (false discovery rate) < 0.20. miR-150-5p and let-7b-5p also showed significant inverse exposure-response associations with TCE exposure (Ptrend= 0.002 and 0.03, respectively). The % differences in serum levels of miR-150-5p relative to unexposed controls were - 13% and - 20% among workers exposed to < 12 ppm and ≥ 12 ppm TCE, respectively. CONCLUSIONS: miR-150-5p is involved in B cell receptor pathways and let-7b-5p plays a role in the innate immune response processes that are potentially important in the etiology of non-Hodgkin lymphoma (NHL). Further studies are needed to replicate these findings and to directly test the association between serum levels of these miRNAs and risk of NHL in prospective studies.


Assuntos
MicroRNAs/sangue , Epidemiologia Molecular , Exposição Ocupacional/análise , Tricloroetileno/análise , Biomarcadores/sangue , China , Feminino , Humanos , Masculino
11.
Carcinogenesis ; 39(5): 661-668, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29538615

RESUMO

Although benzene has long been recognized as a cause of human leukemia, the mechanism by which this simple molecule causes cancer has been problematic. A complicating factor is benzene metabolism, which produces many reactive intermediates, some specific to benzene and others derived from redox processes. Using archived serum from 20 nonsmoking Chinese workers, 10 with and 10 without occupational exposure to benzene (exposed: 3.2-88.9 ppm, controls: 0.002-0.020 ppm), we employed an adductomic pipeline to characterize protein modifications at Cys34 of human serum albumin, a nucleophilic hotspot in extracellular fluids. Of the 47 measured human serum albumin modifications, 39 were present at higher concentrations in benzene-exposed workers than in controls and many of the exposed-control differences were statistically significant. Correlation analysis identified three prominent clusters of adducts, namely putative modifications by benzene oxide and a benzene diolepoxide that grouped with other measures of benzene exposure, adducts of reactive oxygen and carbonyl species, and Cys34 disulfides of small thiols that are formed following oxidation of Cys34. Benzene diolepoxides are potent mutagens and carcinogens that have received little attention as potential causes of human leukemia. Reactive oxygen and carbonyl species-generated by redox processes involving polyphenolic benzene metabolites and by Cyp2E1 regulation following benzene exposure-can modify DNA and proteins in ways that contribute to cancer. The fact that these diverse human serum albumin modifications differed between benzene-exposed and control workers suggests that benzene can increase leukemia risks via multiple pathways involving a constellation of reactive molecules.


Assuntos
Benzeno/efeitos adversos , Carcinogênese/induzido quimicamente , Leucemia/induzido quimicamente , Adulto , Derivados de Benzeno/efeitos adversos , Carcinógenos/toxicidade , Cicloexanos/efeitos adversos , Compostos de Epóxi/efeitos adversos , Feminino , Humanos , Leucemia/sangue , Leucemia/metabolismo , Masculino , Mutagênicos/efeitos adversos , Exposição Ocupacional/efeitos adversos , Risco , Albumina Sérica/metabolismo
12.
Int J Cancer ; 143(11): 2647-2658, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29923177

RESUMO

Genome-wide association studies of childhood acute lymphoblastic leukemia (ALL) have identified regions of association at PIP4K2A and upstream of BMI1 at chromosome 10p12.31-12.2. The contribution of both loci to ALL risk and underlying functional variants remain to be elucidated. We carried out single nucleotide polymorphism (SNP) imputation across chromosome 10p12.31-12.2 in Latino and non-Latino white ALL cases and controls from two independent California childhood leukemia studies, and additional Genetic Epidemiology Research on Aging study controls. Ethnicity-stratified association analyses were performed using logistic regression, with meta-analysis including 3,133 cases (1,949 Latino, 1,184 non-Latino white) and 12,135 controls (8,584 Latino, 3,551 non-Latino white). SNP associations were identified at both BMI1 and PIP4K2A. After adjusting for the lead PIP4K2A SNP, genome-wide significant associations remained at BMI1, and vice-versa (pmeta < 10-10 ), supporting independent effects. Lead SNPs differed by ethnicity at both peaks. We sought functional variants in tight linkage disequilibrium with both the lead Latino SNP among Admixed Americans and lead non-Latino white SNP among Europeans. This pinpointed rs11591377 (pmeta = 2.1 x 10-10 ) upstream of BMI1, residing within a hematopoietic stem cell enhancer of BMI1, and which showed significant preferential binding of the risk allele to MYBL2 (p = 1.73 x 10-5 ) and p300 (p = 1.55 x 10-3 ) transcription factors using binomial tests on ChIP-Seq data from a SNP heterozygote. At PIP4K2A, we identified rs4748812 (pmeta = 1.3 x 10-15 ), which alters a RUNX1 binding motif and demonstrated chromosomal looping to the PIP4K2A promoter. Fine-mapping chromosome 10p12 in a multi-ethnic ALL GWAS confirmed independent associations and identified putative functional variants upstream of BMI1 and at PIP4K2A.


Assuntos
Cromossomos Humanos Par 10/genética , Estudo de Associação Genômica Ampla/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Complexo Repressor Polycomb 1/genética , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Adulto , California/etnologia , Proteínas de Ciclo Celular/metabolismo , Criança , Mapeamento Cromossômico , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Elementos Facilitadores Genéticos , Feminino , Predisposição Genética para Doença , Humanos , Células K562 , Desequilíbrio de Ligação , Modelos Logísticos , Masculino , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/etnologia , Transativadores/metabolismo , Adulto Jovem
13.
Environ Sci Technol ; 52(3): 1542-1550, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29294279

RESUMO

Trichloroethylene (TCE) is a ubiquitous environmental contaminant, which may have effects on both ecosystem and human health. TCE has been reported to cause several toxic effects, but little effort has been made to assess the ecological risks of TCE or its major metabolites: trichloroethanol (TCOH), trichloroacetic acid, and oxalic acid (OA). In this study, the endocrine-disrupting potential of TCE and its metabolites were investigated using in vitro and in silico approaches. We examined alterations in the steroidogenesis pathway using the NCI-H295R cell line and utilized receptor-mediated luciferase reporter cell lines to identify effects on estrogen and androgen receptors. Molecular docking was also used to explore chemical interactions with these receptors. All test chemicals except OA significantly increased 17ß-estradiol production which can be attributed to an up-regulation of 17ß-hydroxysteroid dehydrogenase. Moreover, TCOH exhibited significant antiestrogenic activity with a RIC20 (20% relative inhibitory concentration) of 3.7 × 10-7 M. Molecular docking simulation supported this finding with lower docking scores for TCOH, indicating that hydrogen bonds may stabilize the interaction between TCOH and the estrogen receptor binding pocket. These findings suggest that TCE contamination poses an endocrine-disrupting threat, which has implications for both ecological and human health.


Assuntos
Tricloroetileno , Linhagem Celular , Ecossistema , Humanos , Simulação de Acoplamento Molecular , Ácido Tricloroacético
14.
Arch Toxicol ; 91(2): 921-933, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27339418

RESUMO

Formaldehyde (FA) is a human leukemogen and is hematotoxic in human and mouse. The biological plausibility of FA-induced leukemia is controversial because few studies have reported FA-induced bone marrow (BM) toxicity, and none have reported BM stem/progenitor cell toxicity. We sought to comprehensively examine FA hematoxicity in vivo in mouse peripheral blood, BM, spleen and myeloid progenitors. We included the leukemogen and BM toxicant, benzene (BZ), as a positive control, separately and together with FA as co-exposure occurs frequently. We exposed BALB/c mice to 3 mg/m3 FA in air for 2 weeks, mimicking occupational exposure, then measured complete blood counts, nucleated BM cell count, and myeloid progenitor colony formation. We also investigated potential mechanisms of FA toxicity, including reactive oxygen species (ROS) generation, apoptosis, and hematopoietic growth factor and receptor levels. FA exposure significantly reduced nucleated BM cells and BM-derived colony-forming unit-granulocyte-macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E); down-regulated GM-CSFRα and EPOR expression; increased ROS in nucleated BM, spleen and CFU-GM cells; and increased apoptosis in nucleated spleen and CFU-GM cells. FA and BZ each similarly altered BM mature cells and stem/progenitor counts, BM and CFU-GM ROS, and apoptosis in spleen and CFU-GM but had differential effects on other end points. Co-exposure was more potent for several end points. Thus, FA is toxic to the mouse hematopoietic system, including BM stem/progenitor cells, and it enhances BZ-induced toxic effects. Our findings suggest that FA may induce BM toxicity by affecting myeloid progenitor growth and survival through oxidative damage and reduced expression levels of GM-CSFRα and EPOR.


Assuntos
Benzeno/efeitos adversos , Células da Medula Óssea/efeitos dos fármacos , Formaldeído/toxicidade , Células-Tronco Hematopoéticas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Contagem de Células Sanguíneas , Células da Medula Óssea/patologia , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Baço/efeitos dos fármacos , Testes de Toxicidade/métodos
15.
Carcinogenesis ; 37(7): 692-700, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207665

RESUMO

Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk.


Assuntos
Benzeno/toxicidade , Formaldeído/toxicidade , Leucemia/induzido quimicamente , Linfoma não Hodgkin/induzido quimicamente , Tricloroetileno/toxicidade , Adulto , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Biomarcadores Tumorais/metabolismo , China , Feminino , Hemolíticos/toxicidade , Humanos , Leucemia/epidemiologia , Leucemia/patologia , Ativação Linfocitária/efeitos dos fármacos , Linfoma não Hodgkin/epidemiologia , Linfoma não Hodgkin/patologia , Masculino , Células Progenitoras Mieloides/efeitos dos fármacos , Células Progenitoras Mieloides/patologia , Exposição Ocupacional
16.
Am J Epidemiol ; 183(1): 1-14, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26589707

RESUMO

Benzene is an established cause of adult leukemia, but whether it is associated with childhood leukemia remains unclear. We conducted a meta-analysis in which we reviewed the epidemiologic literature on this topic and explored causal inference, bias, and heterogeneity. The exposure metrics that we evaluated included occupational and household use of benzenes and solvents, traffic density, and traffic-related air pollution. For studies of occupational and household product exposure published from 1987 to 2014, the summary relative risk for childhood leukemia was 1.96 (95% confidence interval (CI): 1.53, 2.52; n = 20). In these studies, the summary relative risk was higher for acute myeloid leukemia (summary relative risk (sRR) = 2.34, 95% CI: 1.72, 3.18; n = 6) than for acute lymphoblastic leukemia (sRR = 1.57; 95% CI: 1.21, 2.05; n = 14). The summary relative risk was higher for maternal versus paternal exposure, in studies that assessed benzene versus all solvents, and in studies of gestational exposure. In studies of traffic density or traffic-related air pollution published from 1999 to 2014, the summary relative risk was 1.48 (95% CI: 1.10, 1.99; n = 12); it was higher for acute myeloid leukemia (sRR = 2.07; 95% CI: 1.34, 3.20) than for acute lymphoblastic leukemia (sRR = 1.49; 95% CI: 1.07, 2.08) and in studies that involved detailed models of traffic pollution (sRR = 1.70; 95% CI: 1.16, 2.49). Overall, we identified evidence of associations between childhood leukemia and several different potential metrics of benzene exposure.


Assuntos
Benzeno/toxicidade , Exposição Ambiental/efeitos adversos , Leucemia Mieloide Aguda/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/induzido quimicamente , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Exposição Materna/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Paterna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
17.
Carcinogenesis ; 36(1): 160-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25391402

RESUMO

Formaldehyde (FA) is an economically important industrial chemical to which millions of people worldwide are exposed environmentally and occupationally. Recently, the International Agency for Cancer Research concluded that there is sufficient evidence that FA causes leukemia, particularly myeloid leukemia. To evaluate the biological plausibility of this association, we employed a chromosome-wide aneuploidy study approach, which allows the evaluation of aneuploidy and structural chromosome aberrations (SCAs) of all 24 chromosomes simultaneously, to analyze cultured myeloid progenitor cells from 29 workers exposed to relatively high levels of FA and 23 unexposed controls. We found statistically significant increases in the frequencies of monosomy, trisomy, tetrasomy and SCAs of multiple chromosomes in exposed workers compared with controls, with particularly notable effects for monosomy 1 [P = 6.02E-06, incidence rate ratio (IRR) = 2.31], monosomy 5 (P = 9.01E-06; IRR = 2.24), monosomy 7 (P = 1.57E-05; IRR = 2.17), trisomy 5 (P = 1.98E-05; IRR = 3.40) and SCAs of chromosome 5 (P = 0.024; IRR = 4.15). The detection of increased levels of monosomy 7 and SCAs of chromosome 5 is particularly relevant as they are frequently observed in acute myeloid leukemia. Our findings provide further evidence that leukemia-related cytogenetic changes can occur in the circulating myeloid progenitor cells of healthy workers exposed to FA, which may be a potential mechanism underlying FA-induced leukemogenesis.


Assuntos
Aneuploidia , Cromossomos Humanos/efeitos dos fármacos , Desinfetantes/efeitos adversos , Formaldeído/efeitos adversos , Células Progenitoras Mieloides/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Adulto , Estudos de Casos e Controles , Células Cultivadas , Estudos Transversais , Feminino , Seguimentos , Humanos , Hibridização in Situ Fluorescente , Masculino , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Prognóstico
18.
Carcinogenesis ; 36(8): 852-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25908645

RESUMO

BACKGROUND: Formaldehyde has been classified as a human myeloid leukemogen. However, the mechanistic basis for this association is still debated. OBJECTIVES: We aimed to evaluate whether circulating immune/inflammation markers were altered in workers occupationally exposed to formaldehyde. METHODS: Using a multiplexed bead-based assay, we measured serum levels of 38 immune/inflammation markers in a cross-sectional study of 43 formaldehyde-exposed and 51 unexposed factory workers in Guangdong, China. Linear regression models adjusting for potential confounders were used to compare marker levels in exposed and unexposed workers. RESULTS: We found significantly lower circulating levels of two markers among exposed factory workers compared with unexposed controls that remained significant after adjusting for potential confounders and multiple comparisons using a false discovery rate of 10%, including chemokine (C-X-C motif) ligand 11 (36.2 pg/ml in exposed versus 48.4 pg/ml in controls, P = 0.0008) and thymus and activation regulated chemokine (52.7 pg/ml in exposed versus 75.0 pg/ml in controls, P = 0.0028), suggesting immunosuppression among formaldehyde-exposed workers. CONCLUSIONS: Our findings are consistent with recently emerging understanding that immunosuppression might be associated with myeloid diseases. These findings, if replicated in a larger study, may provide insights into the mechanisms by which formaldehyde promotes leukemogenesis.


Assuntos
Biomarcadores/sangue , Formaldeído/toxicidade , Inflamação/sangue , Exposição Ocupacional/efeitos adversos , Adulto , Estudos de Casos e Controles , Quimiocina CCL17/sangue , Quimiocina CXCL11/sangue , Quimiocinas/sangue , China , Estudos Transversais , Citocinas/sangue , Feminino , Humanos , Imunossupressores/toxicidade , Inflamação/induzido quimicamente , Masculino , Ligante Indutor de Apoptose Relacionado a TNF/sangue
19.
Carcinogenesis ; 36 Suppl 1: S61-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106144

RESUMO

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Instabilidade Genômica/efeitos dos fármacos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
20.
Int J Cancer ; 137(11): 2644-63, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26061779

RESUMO

Some previous studies have suggested that home pesticide exposure before birth and during a child's early years may increase the risk of childhood leukemia. To further investigate this, we pooled individual level data from 12 case-control studies in the Childhood Leukemia International Consortium. Exposure data were harmonized into compatible formats. Pooled analyses were undertaken using multivariable unconditional logistic regression. The odds ratio (ORs) for acute lymphoblastic leukemia (ALL) associated with any pesticide exposure shortly before conception, during pregnancy and after birth were 1.39 (95% confidence interval [CI]: 1.25, 1.55) (using 2,785 cases and 3,635 controls), 1.43 (95% CI: 1.32, 1.54) (5,055 cases and 7,370 controls) and 1.36 (95% CI: 1.23, 1.51) (4,162 cases and 5,179 controls), respectively. Corresponding ORs for risk of acute myeloid leukemia (AML) were 1.49 (95% CI: 1.02, 2.16) (173 cases and 1,789 controls), 1.55 (95% CI: 1.21, 1.99) (344 cases and 4,666 controls) and 1.08 (95% CI: 0.76, 1.53) (198 cases and 2,655 controls), respectively. There was little difference by type of pesticide used. The relative similarity in ORs between leukemia types, time periods and pesticide types may be explained by similar exposure patterns and effects across the time periods in ALL and AML, participants' exposure to multiple pesticides, or recall bias. Although some recall bias is likely, until a better study design can be found to investigate the associations between home pesticide use and childhood leukemia in an equally large sample, it would appear prudent to limit the use of home pesticides before and during pregnancy, and during childhood.


Assuntos
Leucemia Mieloide Aguda/epidemiologia , Praguicidas/toxicidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Exposição Materna/efeitos adversos , Razão de Chances , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA