Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38108472

RESUMO

Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.


Assuntos
Dente , Animais , Camundongos , Dente Molar , Morfogênese/genética , Odontogênese/genética , Raiz Dentária
2.
Genesis ; 62(1): e23582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38069547

RESUMO

Tfap2b, a pivotal transcription factor, plays critical roles within neural crest cells and their derived lineage. To unravel the intricate lineage dynamics and contribution of these Tfap2b+ cells during craniofacial development, we established a Tfap2b-CreERT2 knock-in transgenic mouse line using the CRISPR-Cas9-mediated homologous direct repair. By breeding with tdTomato reporter mice and initiating Cre activity through tamoxifen induction at distinct developmental time points, we show the Tfap2b lineage within the key neural crest-derived domains, such as the facial mesenchyme, midbrain, cerebellum, spinal cord, and limbs. Notably, the migratory neurons stemming from the dorsal root ganglia are visible subsequent to Cre activity initiated at E8.5. Intriguingly, Tfap2b+ cells, serving as the progenitors for limb development, show activity predominantly commencing at E10.5. Across the mouse craniofacial landscape, Tfap2b exhibits a widespread presence throughout the facial organs. Here we validate its role as a marker of progenitors in tooth development and have confirmed that this process initiates from E12.5. Our study not only validates the Tfap2b-CreERT2 transgenic line, but also provides a powerful tool for lineage tracing and genetic targeting of Tfap2b-expressing cells and their progenitor in a temporally and spatially regulated manner during the intricate process of development and organogenesis.


Assuntos
Sistemas CRISPR-Cas , Tamoxifeno , Camundongos , Animais , Tamoxifeno/farmacologia , Camundongos Transgênicos , Proteína Vermelha Fluorescente , Integrases/genética , Integrases/metabolismo
3.
Ann Surg ; 280(2): 300-310, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557793

RESUMO

OBJECTIVE: Assess cost and complication outcomes after liver transplantation (LT) using normothermic machine perfusion (NMP). BACKGROUND: End-ischemic NMP is often used to aid logistics, yet its impact on outcomes after LT remains unclear, as does its true impact on costs associated with transplantation. METHODS: Deceased donor liver recipients at 2 centers (January 1, 2019, to June 30, 2023) were included. Retransplants, splits, and combined grafts were excluded. End-ischemic NMP (OrganOx-Metra) was implemented in October 2022 for extended-criteria donation after brain death (DBDs), all donations after circulatory deaths (DCDs), and logistics. NMP cases were matched 1:2 with static cold storage controls (SCS) using the Balance-of-Risk [donation after brain death (DBD)-grafts] and UK-DCD Score (DCD-grafts). RESULTS: Overall, 803 transplantations were included, 174 (21.7%) receiving NMP. Matching was achieved between 118 NMP-DBDs with 236 SCS; and 37 NMP-DCD with 74 corresponding SCS. For both graft types, median inpatient comprehensive complications index values were comparable between groups. DCD-NMP grafts experienced reduced cumulative 90-day comprehensive complications index (27.6 vs 41.9, P =0.028). NMP also reduced the need for early relaparotomy and renal replacement therapy, with subsequently less frequent major complications (Clavien-Dindo ≥IVa). This effect was more pronounced in DCD transplants. NMP had no protective effect on early biliary complications. Organ acquisition/preservation costs were higher with NMP, yet NMP-treated grafts had lower 90-day pretransplant costs in the context of shorter waiting list times. Overall costs were comparable for both cohorts. CONCLUSIONS: This is the first risk-adjusted outcome and cost analysis comparing NMP and SCS. In addition to logistical benefits, NMP was associated with a reduction in relaparotomy and bleeding in DBD grafts, and overall complications and post-LT renal replacement for DCDs. While organ acquisition/preservation was more costly with NMP, overall 90-day health care costs-per-transplantation were comparable.


Assuntos
Transplante de Fígado , Preservação de Órgãos , Perfusão , Complicações Pós-Operatórias , Humanos , Masculino , Feminino , Transplante de Fígado/economia , Pessoa de Meia-Idade , Perfusão/métodos , Preservação de Órgãos/métodos , Preservação de Órgãos/economia , Complicações Pós-Operatórias/economia , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Adulto , Idoso , Sobrevivência de Enxerto
4.
Liver Transpl ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39311852

RESUMO

The comparison of outcomes in liver transplantation (LT) is hampered by using clinically non-relevant surrogate endpoints and considerable variability in reported relevant post-transplant outcomes. Such variability stems from non-standard outcome measures across studies, variable definitions of the same complication, and different timing of reporting. The Clavien-Dindo classification was established to improve the rigor of outcome reporting but is non-specific to an intervention and there are unsolved dilemmas specifically related to liver transplantation. Core Outcome Sets (COS) have been used in other specialties to standardize outcomes research, but have not been defined for LT. Thus, we use the five major benchmarking studies published to date to define a 10-measure COS for LT using previously validated metrics. We further provide standard definitions for each of the 10 measures that may be used in international research on the topic. These definitions also include standard time-points for recording to facilitate between-study comparisons and future meta-analysis. These 10 outcomes are paired with 3 validated, procedure-independent metrics, including the Clavien-Dindo Classification and the Comprehensive Complications Index (CCI®). The Clavien scale and CCI® are specifically reviewed to enhance their utility in LT, and their use along with the COS is explored. We encourage future studies to employ this COS along with the Clavien-Dindo grading system & CCI® to improve reproducibility and generalizability of research concerning liver transplantation.

5.
Glob Chang Biol ; 30(1): e17114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273577

RESUMO

Human activity and climate change affect biodiversity and cause species range shifts, contractions, and expansions. Globally, human activities and climate change have emerged as persistent threats to biodiversity, leading to approximately 68% of the ~522 primate species being threatened with extinction. Here, we used habitat suitability models and integrated data on human population density, gross domestic product (GDP), road construction, the normalized difference vegetation index (NDVI), the location of protected areas (PAs), and climate change to predict potential changes in the distributional range and richness of 26 China's primate species. Our results indicate that both PAs and NDVI have a positive impact on primate distributions. With increasing anthropogenic pressure, species' ranges were restricted to areas of high vegetation cover and in PAs surrounded by buffer zones of 2.7-4.5 km and a core area of PAs at least 0.1-0.5 km from the closest edge of the PA. Areas with a GDP below the Chinese national average of 100,000 yuan were found to be ecologically vulnerable, and this had a negative impact on primate distributions. Changes in temperature and precipitation were also significant contributors to a reduction in the range of primate species. Under the expected influence of climate change over the next 30-50 years, we found that highly suitable habitat for primates will continue to decrease and species will be restricted to smaller and more peripheral parts of their current range. Areas of high primate diversity are expected to lose from 3 to 7 species. We recommend that immediate action be taken, including expanding China's National Park Program, the Ecological Conservation Redline Program, and the Natural Forest Protection Program, along with a stronger national policy promoting alternative/sustainable livelihoods for people in the local communities adjacent to primate ranges, to offset the detrimental effects of anthropogenic activities and climate change on primate survivorship.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Humanos , Primatas , Biodiversidade , Ecossistema , Atividades Humanas , China
6.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275119

RESUMO

In this paper, iron phthalocyanine nanowires on a nickel foam (FePc@NF) composite catalyst were prepared by a facile solvothermal approach. The catalyst showed good electrochemical oxygen evolution performance. In 1.0 M KOH electrolyte, 289 mV low overpotential and 49.9 mV dec-1 Tafel slope were seen at a current density of 10 mA cm-2. The excellent electrochemical performance comes from the homogeneous dispersion of phthalocyanine nanostructures on the surface of the nickel foam, which avoids the common agglomeration problem of such catalysts and provides a large number of active sites for the OER reaction, thus improving the catalytic performance of the system.

7.
Molecules ; 29(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39202971

RESUMO

The development of efficient and cost-effective electrocatalysts is crucial for achieving a green hydrogen economy through electrocatalytic water splitting. Herein, we report an excellent catalyst, one-dimensional NiS2/NiS/Mn2O3 nanofibers prepared by electrospinning, which exhibits outstanding electrochemical performance in an alkaline solution. We explored effective strategies to construct one-dimensional nanostructures and composite oxides to promote the electrocatalytic performance of transition metal dichalcogenides. At a current density of 20 mA cm-2, it requires an overpotential of 333 mV for OER. Furthermore, NiS2/NiS/Mn2O3 nanofibers maintain good durability even after 1000 cycles. The long-term electrochemical stability test of the catalyst NiS2/NiS/Mn2O3 was implemented at 20 mA cm-2 for 12 h. The potential remained at 99.52%. Therefore, this study demonstrates that NiS2/NiS/Mn2O3 can serve as a viable green hydrogen production electrocatalyst.

8.
Curr Opin Organ Transplant ; 29(4): 228-238, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38726745

RESUMO

PURPOSE OF REVIEW: Machine perfusion has been adopted into clinical practice in Europe since the mid-2010s and, more recently, in the United States (US) following approval of normothermic machine perfusion (NMP). We aim to review recent advances, provide discussion of potential future directions, and summarize challenges currently facing the field. RECENT FINDINGS: Both NMP and hypothermic-oxygenated perfusion (HOPE) improve overall outcomes after liver transplantation versus traditional static cold storage (SCS) and offer improved logistical flexibility. HOPE offers additional protection to the biliary system stemming from its' protection of mitochondria and lessening of ischemia-reperfusion injury. Normothermic regional perfusion (NRP) is touted to offer similar protective effects on the biliary system, though this has not been studied prospectively.The most critical question remaining is the optimal use cases for each of the three techniques (NMP, HOPE, and NRP), particularly as HOPE and NRP become more available in the US. There are additional questions regarding the most effective criteria for viability assessment and the true economic impact of these techniques. Finally, with each technique purported to allow well tolerated use of riskier grafts, there is an urgent need to define terminology for graft risk, as baseline population differences make comparison of current data challenging. SUMMARY: Machine perfusion is now widely available in all western countries and has become an essential tool in liver transplantation. Identification of the ideal technique for each graft, optimization of viability assessment, cost-effectiveness analyses, and proper definition of graft risk are the next steps to maximizing the utility of these powerful tools.


Assuntos
Sobrevivência de Enxerto , Transplante de Fígado , Preservação de Órgãos , Perfusão , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Transplante de Fígado/tendências , Perfusão/métodos , Perfusão/efeitos adversos , Perfusão/tendências , Perfusão/instrumentação , Preservação de Órgãos/métodos , Preservação de Órgãos/tendências , Preservação de Órgãos/efeitos adversos , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/etiologia , Resultado do Tratamento , Fatores de Risco , Isquemia Fria/efeitos adversos , Animais
9.
Small ; 19(33): e2300201, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36967560

RESUMO

Surface reconstruction of electrocatalysts is very important to clarify the structure-component-activity relationship. In this work, in situ Raman and ex situ technologies are used to capture the surface structure evolution of F-Fe-CoP during the oxygen evolution reaction (OER). The results reveal that the leaching of F accelerates the dynamic reconstruction response of CoP to rapidly convert into active (oxy)hydroxide species. The further introduction of Fe can accelerate the charge transfer rate and alleviate the structural stacking caused by insufficient kinetics. The introduction of F and Fe increases the electron occupation states of cobalt sites and promotes the adsorption of OH- ions on the CoP catalyst, which significantly improves the OER performance. F-Fe-CoP exhibits excellent OER performance with an overpotential of 259 mV at 20 mA cm-2 . This finding enriches the OER mechanism associated with the surface reconstruction of CoP and provides a reference for the rational design of efficient electrocatalysts.

10.
Small ; 19(10): e2206781, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534826

RESUMO

The rational design of ingenious strategies to boost the intrinsic activity and stability of ruthenium (Ru) is of great importance for the substantial progression of water electrolysis technology. Based on Mott-Schottky effect, electronic regulation within a metal/semiconductor hybrid electrocatalyst represents a versatile strategy to boost the electrochemical performance. Herein, a typical Mott-Schottky hydrogen evolution reaction (HER) electrocatalyst composed of uniform ultrafine Ru nanoclusters in situ anchored on N-doped carbon nanofibers (abbreviated as Ru@N-CNFs hereafter) through a feasible and scalable "phenolic resin-bridged" strategy is reported. Both spectroscopy analyses and density functional theory calculations manifest that such rectifying contact can induce the spontaneous electron transfer from Ru to N-doped carbon nanofibers to generate a built-in electric field, thus enormously promoting the charge transfer efficiency and HER intrinsic activity. Moreover, the seamless immobilization of Ru nanoclusters on the substrate can prevent the active sites from unfavorable migration, coarsening, and detachment, rendering the excellent structural stability. Consequently, the well-designed Ru@N-CNFs afford prominent pH-universal HER performances with small overpotentials of 16 and 17 mV at 10 mA cm-2 and low Tafel slopes of 31.8 and 28.5 mV dec-1 in acidic and alkaline electrolytes, respectively, which are superior to the state-of-the-art commercial Pt/C and Ru/C benchmarks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA