Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; 20(15): e2307743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009525

RESUMO

Herein, a series of imine-linked covalent organic frameworks (COFs) are developed with advanced ordered mesoporous hollow spherical nanomorphology and ultra-large mesopores (4.6 nm in size), named OMHS-COF-M (M = H, Co, and Ni). The ordered mesoporous hollow spherical nanomorphology is revealed to be formed via an Ostwald ripening mechanism based on a one-step self-templated strategy. Encouraged by its unique structural features and outstanding photoelectrical property, the OMHS-COF-Co material is applied as the photocatalyst for CO2-to-CO reduction. Remarkably, it delivers an impressive CO production rate as high as 15 874 µmol g-1 h-1, a large selectivity of 92.4%, and a preeminent cycling stability. From in/ex situ experiments and density functional theory (DFT) calculations, the excellent CO2 photoreduction performance is ascribed to the desirable cooperation of unique ordered mesoporous hollow spherical host and abundant isolated Co active sites, enhancing CO2 activation, and improving electron transfer kinetics as well as reducing the energy barriers for intermediates *COOH generation and CO desorption.

2.
Small ; 18(20): e2107997, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35445554

RESUMO

Direct electrochemical conversion of CO2 to CO product powered by renewable electricity is widely advocated as an emerging strategy for alleviating CO2 emissions while addressing global energy issues. However, the development of low-cost and efficient electrocatalysts with high Faradaic efficiency for CO production (FECO ) and high current density remains a grand challenge. Herein, a robust single nickel atomic site electrocatalyst, which features isolated and dense single atomic NiN3 sites anchored on highly defective hierarchically micro-mesoporous carbon (Ni-SAs/HMMNC-800), to enable enhanced charge transport and more exposed active sites for catalyzing electrochemical CO2 -to-CO conversion, is reported. The Ni-SAs/HMMNC-800 catalyst achieves excellent activity and selectivity with high FECO values of >90% throughout a wide potential range (the FECO reaches 99.5% at -0.7 V vs reversible hydrogen electrode) and a CO partial current density as high as 13.0 mA cm-2 at -0.7 V versus reversible hydrogen electrode, as well as a far outstanding durability during long-term continuous operation, indicating a superior CO2 electroreduction performance than that of other reference samples and most of previously reported carbon-based single atom electrocatalysts. Experimental and density functional theory calculations reveal that atomic NiN3 coordination sites coupled adjacent defects are favorable to significantly enhancing the formation of COOH* reaction intermediates while suppressing the competing hydrogen evolution reaction, thereby enhancing the electrocatalytic activity for CO2 -to-CO reduction. Notably, this work provides a valuable new prospect for designing and synthesizing efficient and cost-effective single atom CO2 electroreduction catalysts for practical applications.

3.
Angew Chem Int Ed Engl ; 61(31): e202207043, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638157

RESUMO

Covalent organic frameworks (COFs) are gaining increasing attention as renewable cathode materials for Li-ion batteries. However, COF electrodes reported so far still exhibit unsatisfying capacity due to their limited active site density and insufficient utilization. Herein, a new two-dimensional polyimide-linked COF, HATN-AQ-COF with multiple redox-active sites for storing Li+ ions, was designed and fabricated from a new module of 2,3,8,9,14,15-hexacarboxyl hexaazatrinaphthalene trianhydrides with a 2,6-diaminoanthraquinone linker. HATN-AQ-COF possessing excellent stability, good conductivity, and a large pore size of 3.8 nm enables the stable and fast ion transport. This, in combination with the abundant redox active sites, results in a high reversible capacity of 319 mAh g-1 at 0.5 C (1 C=358 mA g-1 ) for the HATN-AQ-COF electrode with a high active site utilization of 89 % and good cycle performance, representing one of the best performances among the reported COF electrodes.

4.
Angew Chem Int Ed Engl ; 61(31): e202205585, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35611995

RESUMO

Assemblies that mimic natural lipid bilayers are theoretically efficient for photocatalytic CO2 reduction; however, such an approach has not been yet explored. Herein, metallogels (LG/Nico-Co) based on the co-assembly of L-glutamic acid lipid (LG/Nico) and cobalt ions exhibited excellent photocatalytic CO2 reduction, with 208 724 µmol g-1 CO production within 24 h and 90 % CO/H2 selectivity, or 166 826 µmol g-1 CO production within 12 h and 46 % CO/H2 selectivity, depending on the water content of the solvent. The alkyl chains of LG/Nico provide a hydrophobic microenvironment for efficient gas transfer, and the assembled bilayers induce a synergistic effect between two adjacent Co ions for catalyzing the CO2 reduction reaction. These architectures present new alternatives for the development of highly efficient photocatalytic soft matter based on the assembly of small amphiphilic molecules.


Assuntos
Dióxido de Carbono , Cobalto , Dióxido de Carbono/química , Cobalto/química , Água/química
5.
Nano Lett ; 20(8): 6206-6214, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32697097

RESUMO

Herein, we report efficient single copper atom catalysts that consist of dense atomic Cu sites dispersed on a three-dimensional carbon matrix with highly enhanced mesoporous structures and improved active site accessibility (Cu-SA/NC(meso)). The ratio of +1 to +2 oxidation state of the Cu sites in the Cu-SA/NC(meso) catalysts can be controlled by varying the urea content in the adsorption precursor, and the activity for ORR increases with the addition of Cu1+ sites. The optimal Cu1+-SA/NC(meso)-7 catalyst with highly accessible Cu1+ sites exhibits superior ORR activity in alkaline media with a half-wave potential (E1/2) of 0.898 V vs RHE, significantly exceeding the commercial Pt/C, along with high durability and enhanced methanol tolerance. Control experiments and theoretical calculations demonstrate that the superior ORR catalytic performance of Cu1+-SA/NC(meso)-7 catalyst is attributed to the atomically dispersed Cu1+ sites in catalyzing the reaction and the advantage of the introduced mesoporous structure in enhancing the mass transport.

6.
Environ Res ; 151: 734-741, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27662212

RESUMO

Temperature and relative humidity can simultaneously change in indoor environment, which significantly affect the emission rate of formaldehyde and volatile organic compounds (VOCs) from building materials. Prior studies generally focus on the single effect of temperature or relative humidity, and the combined effect is not considered. This paper investigates the comprehensive influence of temperature and relative humidity on the emission rate of pollutants from building materials. Correlation between the emission rate and the combined environmental factors is derived theoretically. Data in literature are applied to validate the effectiveness of the correlation. With the correlation, the indoor formaldehyde concentration in summer is predicted to be 1.63 times of that in winter in Beijing, which is approximately consistent with surveyed data. In addition, a novel approach is proposed to assess the human health impact due to pollutants emitted from building materials at varied temperature and relative humidity. An association between the human carcinogenic potential (HCP) and the environmental factors is obtained. By introducing a reference room model developed previously, it is calculated that the HCP of bedroom at high relative humidity (70%, 25°C) for formaldehyde exceeds 10-4 cases, meaning high cancer health risk. This study should prove useful for evaluating the emission behaviors and the associated exposure of pollutants from building materials at varied environmental conditions.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Materiais de Construção , Formaldeído/análise , Exposição por Inalação/análise , Modelos Teóricos , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Pequim , Formaldeído/efeitos adversos , Humanos , Umidade , Exposição por Inalação/efeitos adversos , Estações do Ano , Temperatura , Compostos Orgânicos Voláteis/efeitos adversos
7.
J Colloid Interface Sci ; 631(Pt A): 96-101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370498

RESUMO

Recently, Ni, N-doped carbon (NiNC) electrocatalysts synthesized using metal-organic frameworks (MOFs) as templates have demonstrated attractive catalytic performances in the CO2 reduction reaction (CO2RR). However, most of the reported preparations of MOFs-based precursors are carried out in organic solvents, and the resulting NiNC materials have relatively low metal loadings and mainly exhibit microporous structures, which is unfavorable for the mass transport. Herein, Ni, N-doped meso-microporous carbon electrocatalysts with a range of Ni loadings (M-NiNCx/CNTs) were prepared by the pyrolysis of MOFs-based precursors synthesized in aqueous solution using the surfactant cetyltrimethylammonium bromide (CTAB) as a modifier to promote the adsorption of Ni2+ ions and the formation of mesopores. Owing to the unique morphology, porous structure and high contents of Ni-Nx sites and pyrrolic-N, the optimal catalyst (M-NiNC2/CNTs) shows superior electrocatalytic activity for the CO2RR with a maximum CO Faradaic efficiency (FECO) of 98 % at -0.7 V vs. reversible hydrogen electrode (RHE), and the FECO can reach over 80 % in a wide potential range of -0.5 to -1.0 V vs. RHE. This work develops a facile and environmentally friendly strategy to obtain high-performance and low-cost transition metal-nitrogen-doped porous carbon electrocatalysts for the CO2RR.

8.
Front Public Health ; 10: 897386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832274

RESUMO

Environmental pollution liability insurance (EPLI) is a type of insurance purchased by an enterprise to compensate the loss of the victims in the event of an environmental pollution incident. Although EPLI can realize the post-treatment of environmental pollution to a certain extent, there is still less understanding of whether EPLI can improve the environmental performance of enterprises. This study takes A-share listed companies in heavily polluting industries as the research object, determines the treatment group samples according to the Insurance coverage list published by the Ministry of Environmental Protection in 2014 and 2015, and then constructs the empirical test model. In order to ensure that there is no sample selection bias, the PSM method is used to preprocess the samples in this study to ensure the robustness of the conclusions. The empirical tests show that EPLI can significantly improve corporate environmental performance. Further analysis showed that higher public visibility is conducive to the positive environmental effects of EPLI. Compared with state-owned enterprises, non-state-owned enterprises have more significant implementation effects after introducing EPLI. On further examination, the result indicates that environmental pollution liability insurance can improve environmental performance by alleviating corporate financing constraints. The findings of this paper enrich the theory of the economic impact of environmental pollution liability insurance, which has some meaningful theoretical guidance for enterprises and policy makers.


Assuntos
Poluição Ambiental , Seguro de Responsabilidade Civil , China , Conservação dos Recursos Naturais , Indústrias
9.
Adv Mater ; 34(37): e2203605, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35905464

RESUMO

The poor electronic and ionic conductivities of covalent organic frameworks (COFs) severely restrict the development of COF-based electrodes for practical rechargeable batteries, therefore inspiring more research interest from the direction of both material synthesis and technology. Herein, a dual-porous COF, USTB-6, with good crystallinity and rich redox-active sites is conceived and fabricated by the polymerization of 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and 2,7-diaminopyrene-4,5,9,10-tetraone. In particular, the heterogeneous polymerization of the same starting materials in the presence of graphene affords uniformly dispersed COF nanosheets with a thickness of 8.3 nm on a conductive carbon substrate, effectively enhancing the electronic conductivity of the COF-based electrode. Such a graphene-supported USTB-6 nanosheets cathode when used in a lithium-ion battery exhibits a specific capacity of 285 mA h g-1 at a current density of 0.2 C and excellent rate performance with a prominent capacity of 188 mA h g-1 at 10 C. More importantly, a capacity of 170 mA h g-1 is retained by using the USTB-6 nanosheets cathode after 6000 cycles charge and discharge measurement at 5 C.

10.
ACS Appl Mater Interfaces ; 14(36): 41122-41130, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044780

RESUMO

Two-dimensional (2D) porphyrin-based covalent organic frameworks (COFs) are one of the most promising candidates for photocatalytic carbon dioxide reduction reaction (CO2RR), which however still suffer from the hindered mass transfer during the catalysis procedure associated with the close packing of 2D COF layers due to the strong axial π-π stacking. Herein, condensation between the porphyrinic aldehydes p-MPor-CHO (M = H2, Co, and Ni) and 3,8-diamino-6-phenyl-phenanthridine (DPP) affords new porphyrin-based 2D COF architecture MPor-DPP-COFs (M = H2, Co, and Ni). The bulky phenyl substituent at the phenanthridine periphery of the linking unit reduces the axial π-π stacking, providing an enlarged inter-layer spacing of 6.0 Å according to high-resolution transmission electron microscopy. This, in combination with the large surface area (1021 m2 g-1) revealed by nitrogen sorption measurements at 77 K for CoPor-DPP-COF possessing electroactive Co ions, endows it with excellent photocatalytic activity for CO2RR with a CO generation rate of 10 200 µmol g-1 h-1 and a CO selectivity up to 82%. This work affords new ideas for achieving efficient photocatalytic CO2RR upon fine-tuning the inter-layer spacing of 2D COFs.

11.
Chem Commun (Camb) ; 56(5): 798-801, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31848528

RESUMO

Catalysts composed of isolated single Fe atoms coordinated to graphitic carbon nitride (g-C3N4) dispersed on hierarchical porous N-doped carbon polyhedra (Fe-g-C3N4/HPNCPs) were successfully prepared. The optimized catalyst, Fe-g-C3N4/HPNCP-0.8, showed excellent electrocatalytic activity for the oxygen reduction reaction under alkaline conditions with a half-wave potential of 0.902 V, significantly outperforming commercial Pt/C, as well as high durability. The high performance stems from the synergistic effect of the atomically dispersed Fe-N2 sites and the advantages of the hierarchical porous structure for promoting mass transport and improving the accessibility of the active sites.

12.
Huan Jing Ke Xue ; 35(5): 1718-26, 2014 May.
Artigo em Zh | MEDLINE | ID: mdl-25055658

RESUMO

To understand the water environment regimes of the city-circling water system in Hefei City, six typical landscape waters were chosen to investigate pollution characteristics of nitrogen and phosphate and evaluate water eutrophication level according to the monitoring data of water physicochemical characteristics and chlorophyll content from September 2012 to July 2013. Study results showed that (1) the six waters mentioned above have been seriously polluted by nitrogen and phosphorus loadings, with the monthly mean values of total nitrogen (TN) and total phosphorus (TP) concentrations far exceeding the universally accepted threshold values of water eutrophication; (2) the nitrogen contents in the waters of Nanfeihe River, Heichiba and Yuhuatang scenic spots exhibited a markedly monthly variation, and both TP and PO(3-)(4)-P in Nanfeihe River showed a fluctuated characteristic with high concentrations while presenting a significant upward trend in Yuhuatang scenic spot; (3) the average values of TN/TP ratios for Yuhuatang and Heichiba scenic spots were 104.7 and 158.3, respectively, and the ratios for Baohe Park, Yinhe Park, Xiaoyaojin Park, and city segment of Nanfeihe River were 16.8, 18.7, 6.4 and 16.8, respectively, indicating that the scenic waters of Yuhuatang and Heichiba were phosphate-limited whereas Xiaoyaojin Park was nitrogen-limited; (4) all the six scenic waters were, in general, subsumed under just two broad categories, namely Hechiba scenic spot and Nanfeihe River, which were seriously polluted, and clustered together, and the others fall into the second class; and (5) water eutrophication appraisal result indicated that the six waters were all in the state of eutrophication, and could be arranged in the order of eutrophication level, Yinhe Park > Heichiba scenic spot > city segment of Nanfeihe River > Xiaoyaojin Park > Yuhuatang scenic spot > Baohe Park.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Fosfatos/análise , Poluentes Químicos da Água/análise , China , Clorofila/análise , Cidades , Eutrofização , Fósforo/análise , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA