Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2097-2105, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297746

RESUMO

In this paper, a 4L-shaped graphene patterned polarization-insensitive plasmon-induced transparency (PIT) metamaterial structure is proposed. The photoelectric switch based on this structure supports a variety of light sources, such as linearly polarized light with different polarization directions, left rotation circularly polarized light (LCP) and right rotation circularly polarized light (RCP). And the switch has excellent performance in the case of different light sources, the amplitude modulation is as high as 99.01%, and the insertion loss is as low as 0.04 dB. In addition, the PIT metamaterial has a high refractive index sensitivity of up to 49156 nm/RIU. The group index of the PIT metamaterial is as high as 980, which can achieve excellent slow light effect. This study provides a scheme and guidance for the design of optoelectronic devices.

2.
Polymers (Basel) ; 10(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30960869

RESUMO

Porous organic polymers (POPs) are highly versatile materials that find applications in adsorption, separation, and catalysis. Herein, a feasibility study on the design and synthesis of POP supports with a tunable pore structure and high ethylene-polymerization activity was conducted by the selection of functional comonomers and template agents, and control of cross-linking degree of their frameworks. Functionalized POPs with a tunable pore structure were designed and synthesized by a dispersion polymerization strategy. The functional comonomers incorporated in the poly(divinylbenzene) (PDVB)-based matrix played a significant role in the porous structure and particle morphology of the prepared polymers, and a specific surface area (SSA) of 10⁻450 m²/g, pore volume (PV) of 0.05⁻0.5 cm³/g, bulk density with a range of 0.02⁻0.40 g/cm³ were obtained by the varied functional comonomers. Besides the important factors of thermodynamic compatibility of the selected solvent system, other factors that could be used to tune the pore structure and morphology of the POP particles have been also investigated. The Fe3O4 nanoaggregates as a template agent could help improve the porous structure and bulk density of the prepared POPs, and the highly cross-linking networks can dramatically increase the porous fabric of the prepared POPs. As for the immobilized metallocene catalysts, the pore structure of the prepared POPs had a significant influence on the loading amount of the Zr and Al of the active sites, and the typically highly porous structure of the POPs would contribute the immobilization of the active species. High ethylene-polymerization activity of 8033 kg PE/mol Zr h bar was achieved on the POPs-supported catalysts, especially when high Al/Zr ratios on the catalysts were obtained. The performance of the immobilized metallocene catalysts was highly related to the pore structure and functional group on the POP frameworks.

3.
Int J Pharm ; 508(1-2): 109-22, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27167333

RESUMO

This paper describes solid form control and particle size control of RG3487, a nicotinic receptor partial agonist. Four crystal forms were identified by polymorph screen under ∼100 varying conditions. Form A and Form B are anhydrates, while Forms C and D are solvates. Forms A, which is enantiotropically related to Form B, is the more thermodynamically stable form under ambient conditions and the desired form selected for clinical development. The crystal form control of Form A was achieved by crystallization solvent selection which consistently produced the desired form. Several process parameters impacting particle size of Form A in the final crystallization step were identified and investigated through both online and offline particle size measurement. The investigation results were utilized to control crystallization processes which successfully produced Form A with different particle size in 500g scale.


Assuntos
Compostos Bicíclicos com Pontes/química , Cristalização , Agonismo Parcial de Drogas , Indazóis/química , Tamanho da Partícula , Receptor Nicotínico de Acetilcolina alfa7 , Química Farmacêutica , Estrutura Molecular , Termodinâmica , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
4.
J Org Chem ; 61(23): 8103-8112, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11667797

RESUMO

Transmetalation of 1-lithiotetrahydroisoquinolyloxazolines with magnesium halides affords Grignard reagents that add to aldehydes with up to 80% selectivity for one of the four possible diastereomeric products. An oxazoline chiral auxiliary derived from camphor provides an optimal blend of diastereoselectivity and isomer separability. Synthetic applications of the optimal auxiliary, patterned after a literature approach in the racemic series, comprise an improved (formal) synthesis of bicuculline, egenine, and corytensine, as well as an efficient synthesis of corlumine. Preliminary NMR studies show that both 1-lithio- and 1-magnesiotetrahydroisoquinolyloxazolines are dynamic mixtures in THF solution at low temperatures. The barrier to pyramidal inversion of the secondary Grignard reagent is in the 9.8-10.1 kcal/mol range, while an upper limit of about 8.2 kcal/mol can be assigned to the barrier to the organolithium inversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA