Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(14): e2308109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988717

RESUMO

Silicon is regarded as the most promising candidate due to its ultrahigh theoretical energy density (4200 mAh g-1). However, the large volume expansion of silicon nanoparticles would result in the destruction of electrodes and a shortened cycle lifetime. Here, inspired by the natural structure of bamboo, the silicon anode with vascular bundle-like structure is proposed to improve the electrochemical performance for the first time. The dense channel wall in the silicon anode can accommodate the volume change of silicon nanoparticles and the transport of ions and electrons is also enhanced. The obtained silicon anodes display excellent mechanical properties (50% compression resilience and the average peel force of 4.34 N) and good wettability. What more, the silicon anodes exhibit high initial coulombic efficiency (94.5%), excellent cycle stability (2100 mAh g-1 after 300 cycles) which stands out among the silicon anodes. Specially, the silicon anode with impressive areal capacity of 36.36 mAh cm-2 and initial coulombic efficiency of 84% is also achieved. This work offers a novel and efficient strategy for the preparation of the flexible electrodes with outstanding performance.

2.
Nat Mater ; 22(8): 950-957, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37037961

RESUMO

Uniform tensile ductility (UTD) is crucial for the forming/machining capabilities of structural materials. Normally, planar-slip induced narrow deformation bands localize the plastic strains and hence hamper UTD, particularly in body-centred-cubic (bcc) multi-principal element high-entropy alloys (HEAs), which generally exhibit early necking (UTD < 5%). Here we demonstrate a strategy to tailor the planar-slip bands in a Ti-Zr-V-Nb-Al bcc HEA, achieving a 25% UTD together with nearly 50% elongation-to-failure (approaching a ductile elemental metal), while offering gigapascal yield strength. The HEA composition is designed not only to enhance the B2-like local chemical order (LCO), seeding sites to disperse planar slip, but also to generate excess lattice distortion upon deformation-induced LCO destruction, which promotes elastic strains and dislocation debris to cause dynamic hardening. This encourages second-generation planar-slip bands to branch out from first-generation bands, effectively spreading the plastic flow to permeate the sample volume. Moreover, the profuse bands frequently intersect to sustain adequate work-hardening rate (WHR) to large strains. Our strategy showcases the tuning of plastic flow dynamics that turns an otherwise-undesirable deformation mode to our advantage, enabling an unusual synergy of yield strength and UTD for bcc HEAs.

3.
Inorg Chem ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039656

RESUMO

Recently, Cr3+-activated near-infrared (NIR) phosphors have received much more attention due to their excellent photoluminescence (PL) properties. However, most of them suffer from poor thermal stability which limits further application. Herein, a novel Lu2CaGa4SnO12:Cr3+ phosphor with broadband NIR emission (λem = 750 nm) is synthesized successfully. Despite the good luminescence property, its PL intensity decreases obviously with temperature (I425 K = 79%). To improve the thermal stability, a series of Lu2+xCa1-xGa4+xSn1-xO12:Cr3+ (x = 0-1.0) solid solutions with tunable thermal quenching performance have been designed. It is found that the fluorescence intensity ratio (FIR) of 4T2 → 4A2 to 2E → 4A2 [I(4T2)/I(2E)] transitions (i.e. electron occupation) decreases monotonously with increasing [Lu3+-Ga3+] co-substitution, resulting from a strengthened crystal field strength and increased energy difference between 4T2 and 2E energy levels. Benefiting from the various thermal population and energy difference Δ', the PL thermal quenching behavior of Lu2+xCa1-xGa4+xSn1-xO12:Cr3+ can be adjusted easily, and the corresponding mechanism is explored in detail. Most notably, the emission intensity of Lu2+xCa1-xGa4+xSn1-xO12:Cr3+ at 425 K can reach up to 142% compared with that at 300 K, which may be the best for Cr3+-activated NIR phosphors. This work may provide an alternative path for the development of thermally stable broadband NIR phosphors.

4.
J Immunol ; 208(12): 2795-2805, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688466

RESUMO

Defensins are a major class of antimicrobial peptides that facilitate the immune system to resist pathogen infection. To date, only ß-defensins have been identified in pigs. In our previous studies, porcine ß-defensin 2 (PBD-2) was shown to have both bactericidal activity and modulatory roles on inflammation. PBD-2 can interact with the cell surface TLR4 and interfere with the NF-κB signaling pathway to suppress the inflammatory response. In this study, the intracellular functions of PBD-2 were investigated. The fluorescently labeled PBD-2 could actively enter mouse macrophage cells. Proteomic analysis indicated that 37 proteins potentially interacted with PBD-2, among which vasohibin-1 (VASH1) was further tested. LPS, an inflammation inducer, suppressed the expression of VASH1, whereas PBD-2 inhibited this effect. PBD-2 inhibited LPS-induced activation of Akt, expression and release of the inflammatory mediators vascular endothelial growth factor and NO, and cell damage. A follow-up VASH1 knockdown assay validated the specificity of the above observations. In addition, PBD-2 inhibited LPS-induced NF-κB activation via Akt. The inhibition effects of PBD-2 on LPS triggered suppression of VASH1 and activation of Akt, and NF-κB and inflammatory cytokines were also confirmed using pig alveolar macrophage 3D4/21 cells. Therefore, the data indicate that PBD-2 interacts with intracellular VASH1, which inhibits the LPS-induced Akt/NF-κB signaling pathway, resulting in suppression of inflammatory responses. Together with our previous findings, we conclude that PBD-2 interacts with both the cell surface receptor (TLR4) and also with the intracellular receptor (VASH1) to control inflammation, thereby providing insights into the immunomodulatory roles of defensins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , NF-kappa B , beta-Defensinas , Animais , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Receptor 4 Toll-Like , Fator A de Crescimento do Endotélio Vascular/farmacologia , beta-Defensinas/farmacologia
5.
Biomacromolecules ; 24(9): 4123-4137, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37584644

RESUMO

Citrate-based polymers are commonly used to create biodegradable implants. In an era of personalized medicine, it is highly desired that the degradation rates of citrate-based implants can be artificially regulated as required during clinical applications. Unfortunately, current citrate-based polymers only undergo passive degradation, which follows a specific degradation profile. This presents a considerable challenge for the use of citrate-based implants. To address this, a novel citrate-based polyester elastomer (POCSS) with artificially regulatable degradation rate is developed by incorporating disulfide bonds (S-S) into the backbone chains of the crosslinking network of poly(octamethylene citrate) (POC). This POCSS exhibits excellent and tunable mechanical properties, notable antibacterial properties, good biocompatibility, and low biotoxicity of its degradation products. The degradation rate of the POCSS can be regulated by breaking the S-S in its crosslinking network using glutathione (GSH). After a period of subcutaneous implantation of POCSS scaffolds in mice, the degradation rate eventually increased by 2.46 times through the subcutaneous administration of GSH. Notably, we observed no significant adverse effects on its surrounding tissues, the balance of the physiological environment, major organs, and the health status of the mice during degradation.


Assuntos
Elastômeros , Poliésteres , Camundongos , Animais , Elastômeros/química , Poliésteres/química , Ácido Cítrico , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual , Polímeros/química , Citratos/química
6.
Vet Res ; 54(1): 42, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237397

RESUMO

Actinobacillus pleuropneumoniae is an important swine respiratory pathogen. Previous studies have suggested that growth as a biofilm is a natural state of A. pleuropneumoniae infection. To understand the survival features involved in the biofilm state, the growth features, morphology and gene expression profiles of planktonic and biofilm A. pleuropneumoniae were compared. A. pleuropneumoniae in biofilms showed reduced viability but maintained the presence of extracellular polymeric substances (EPS) after late log-phase. Under the microscope, bacteria in biofilms formed dense aggregated structures that were connected by abundant EPS, with reduced condensed chromatin. By construction of Δpga and ΔdspB mutants, polymeric ß-1,6-linked N-acetylglucosamine and dispersin B were confirmed to be critical for normal biofilm formation. RNA-seq analysis indicated that, compared to their planktonic counterparts, A. pleuropneumoniae in biofilms had an extensively altered transcriptome. Carbohydrate metabolism, energy metabolism and translation were significantly repressed, while fermentation and genes contributing to EPS synthesis and translocation were up-regulated. The regulators Fnr (HlyX) and Fis were found to be up-regulated and their binding motifs were identified in the majority of the differentially expressed genes, suggesting their coordinated global role in regulating biofilm metabolism. By comparing the transcriptome of wild-type biofilm and Δpga, the utilization of oligosaccharides, iron and sulfur and fermentation were found to be important in adhesion and aggregation during biofilm formation. Additionally, when used as inocula, biofilm bacteria showed reduced virulence in mouse, compared with planktonic grown cells. Thus, these results have identified new facets of A. pleuropneumoniae biofilm maintenance and regulation.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Animais , Suínos , Camundongos , Actinobacillus pleuropneumoniae/genética , Biofilmes , Transcriptoma , Virulência , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Doenças dos Suínos/microbiologia
7.
J Headache Pain ; 24(1): 149, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932721

RESUMO

PURPOSE: Serum neurofilament light chain (sNfL) can reflect nerve damage. Whether migraine can cause neurological damage remain unclear. This study assesses sNfL levels in migraine patients and explores whether there is nerve damage in migraine. METHODS: A case-control study was conducted in Xiamen, China. A total of 138 migraine patients and 70 healthy controls were recruited. sNfL (pg/mL) was measured on the single-molecule array platform. Univariate, Pearson correlation and linear regression analysis were used to assess the relationship between migraine and sNfL levels, with further subgroup analysis by migraine characteristics. RESULTS: Overall, 85.10% of the 208 subjects were female, with a median age of 36 years. sNfL levels were higher in the migraine group than in the control group (4.85 (3.49, 6.62) vs. 4.11 (3.22, 5.59)), but the difference was not significant (P = 0.133). The two groups showed an almost consistent trend in which sNfL levels increased significantly with age. Subgroup analysis showed a significant increase in sNfL levels in patients with a migraine course ≥ 10 years (ß = 0.693 (0.168, 1.220), P = 0.010). Regression analysis results show that age and migraine course are independent risk factors for elevated sNfL levels, and there is an interaction between the two factors. Patients aged < 45 years and with a migraine course ≥ 10 years have significantly increased sNfL levels. CONCLUSIONS: This is the first study to evaluate sNfL levels in migraine patients. The sNfL levels significantly increased in patients with a migraine course ≥ 10 years. More attention to nerve damage in young patients with a long course of migraine is required.


Assuntos
Filamentos Intermediários , Transtornos de Enxaqueca , Humanos , Feminino , Adulto , Masculino , Estudos de Casos e Controles , Biomarcadores , China
8.
Angew Chem Int Ed Engl ; 62(26): e202305282, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37186156

RESUMO

Tough and self-healable substrates can enable stretchable electronics long service life. However, for substrates, it still remains a challenge to achieve both high toughness and autonomous self-healing ability at room temperature. Herein, a strategy by using the combined effects between quadruple H-bonding and slidable cross-links is proposed to solve the above issues in the elastomer. The elastomer exhibits high toughness (77.3 MJ m-3 ), fracture energy (≈127.2 kJ m-2 ), and good healing efficiency (91 %) at room temperature. The superior performance is ascribed to the inter and intra crosslinking structures of quadruple H-bonding and polyrotaxanes in the dual crosslinking system. Strain-induced crystallization of PEG in polyrotaxanes also contributes to the high fracture energy of the elastomers. Furthermore, based on the dual cross-linked supramolecular elastomer, a highly stretchable and self-healable electrode containing liquid metal is also fabricated, retaining resistance stability (0.16-0.26 Ω) even at the strain of 1600 %.


Assuntos
Rotaxanos , Cristalização , Elastômeros , Eletrodos , Eletrônica
9.
J Bacteriol ; 204(2): e0032621, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34807725

RESUMO

Bacteria have evolved a variety of enzymes to eliminate endogenous or host-derived oxidative stress factors. The Dps protein, first identified in Escherichia coli, contains a ferroxidase center, and protects bacteria from reactive oxygen species damage. Little is known of the role of Dps-like proteins in bacterial pathogenesis. Actinobacillus pleuropneumoniae causes pleuropneumonia, a respiratory disease of swine. The A. pleuropneumoniae ftpA gene is upregulated during shifts to anaerobiosis, in biofilms and, as found in this study, in the presence of H2O2. An A. pleuropneumoniae ftpA deletion mutant (ΔftpA) had increased H2O2 sensitivity, decreased intracellular viability in macrophages, and decreased virulence in a mouse infection model. Expression of ftpA in an E. coli dps mutant restored wild-type H2O2 resistance. FtpA possesses a conserved ferritin domain containing a ferroxidase site. Recombinant rFtpA bound and oxidized Fe2+ reversibly. Under aerobic conditions, the viability of an ΔftpA mutant was reduced compared with the wild-type strain after extended culture, upon transition from anaerobic to aerobic conditions, and upon supplementation with Fenton reaction substrates. Under anaerobic conditions, the addition of H2O2 resulted in a more severe growth defect of ΔftpA than it did under aerobic conditions. Therefore, by oxidizing and mineralizing Fe2+, FtpA alleviates the oxidative damage mediated by intracellular Fenton reactions. Furthermore, by mutational analysis, two residues were confirmed to be critical for Fe2+ binding and oxidization, as well as for A. pleuropneumoniae H2O2 resistance. Taken together, the results of this study demonstrate that A. pleuropneumoniae FtpA is a Dps-like protein, playing critical roles in oxidative stress resistance and virulence. IMPORTANCE As a ferroxidase, Dps of Escherichia coli can protect bacteria from reactive oxygen species damage, but its role in bacterial pathogenesis has received little attention. In this study, FtpA of the swine respiratory pathogen A. pleuropneumoniae was identified as a new Dps-like protein. It facilitated A. pleuropneumoniae resistance to H2O2, survival in macrophages, and infection in vivo. FtpA could bind and oxidize Fe2+ through two important residues in its ferroxidase site and protected the bacteria from oxidative damage mediated by the intracellular Fenton reaction. These findings provide new insights into the role of the FtpA-based antioxidant system in the pathogenesis of A. pleuropneumoniae, and the conserved Fe2+ binding ligands in Dps/FtpA provide novel drug target candidates for disease prevention.


Assuntos
Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredução , Estresse Fisiológico/genética , Actinobacillus pleuropneumoniae/química , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Escherichia coli/genética , Feminino , Ferro/metabolismo , Camundongos , Espécies Reativas de Oxigênio , Virulência/genética
10.
Infect Immun ; 90(9): e0023922, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938858

RESUMO

Nitrate metabolism is an adaptation mechanism used by many bacteria for survival in anaerobic environments. As a by-product of inflammation, nitrate is used by the intestinal bacterial pathogens to enable gut infection. However, the responses of bacterial respiratory pathogens to nitrate are less well understood. Actinobacillus pleuropneumoniae is an important bacterial respiratory pathogen of swine. Previous studies have suggested that adaptation of A. pleuropneumoniae to anaerobiosis is important for infection. In this work, A. pleuropneumoniae growth and pathogenesis in response to the nitrate were investigated. Nitrate significantly promoted A. pleuropneumoniae growth under anaerobic conditions in vitro and lethality in mice. By using narQ and narP deletion mutants and single-residue-mutated complementary strains of ΔnarQ, the two-component system NarQ/P was confirmed to be critical for nitrate-induced growth, with Arg50 in NarQ as an essential functional residue. Transcriptome analysis showed that nitrate upregulated multiple energy-generating pathways, including nitrate metabolism, mannose and pentose metabolism, and glycerolipid metabolism via the regulation of NarQ/P. Furthermore, narQ, narP, and its target gene encoding the nitrate reductase Nap contributed to the pathogenicity of A. pleuropneumoniae. The Nap inhibitor tungstate significantly reduced the survival of A. pleuropneumoniae in vivo, suggesting that Nap is a potential drug target. These results give new insights into how the respiratory pathogen A. pleuropneumoniae utilizes the alternative electron acceptor nitrate to overcome the hypoxia microenvironment, which can occur in the inflammatory or necrotic infected tissues.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Manose/metabolismo , Camundongos , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Pentoses/metabolismo , Suínos , Virulência
11.
Small ; 18(19): e2200533, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35388964

RESUMO

The demand for stretchable electronics with a broader working range is increasing for wide application in wearable sensors and e-skin. However, stretchable conductors based on soft elastomers always exhibit low working range due to the inhomogeneous breakage of the conductive network when stretched. Here, a highly stretchable and self-healable conductor is reported by adopting polyrotaxane and disulfide bonds into the binding layer. The binding layer (PR-SS) builds the bridge between polymer substrates (PU-SS) and silver nanowires (AgNWs). The incorporation of sliding molecules endows the stretchable conductor with a long sensing range (190%) due to the energy dissipation derived from the sliding nature of polyrotaxanes, which is two times higher than the working range (93%) of conductors based on AP-SS without polyrotaxanes. Furthermore, the mechanism of sliding effect for the polyrotaxanes in the elastomers is investigated by SEM for morphological change of AgNWs, in situ small-angle x-ray scattering, as well as stress relaxation experiments. Finally, human-body-related sensing tests and a self-correction system in fitness are designed and demonstrated.


Assuntos
Ciclodextrinas , Rotaxanos , Elastômeros/química , Condutividade Elétrica , Humanos , Polímeros/química
12.
Bioinformatics ; 37(5): 677-683, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33051642

RESUMO

MOTIVATION: Many biological processes are regulated by single molecules and molecular assemblies within cells that are visible by microscopy as punctate features, often diffraction limited. Here, we present detecting-NEMO (dNEMO), a computational tool optimized for accurate and rapid measurement of fluorescent puncta in fixed-cell and time-lapse images. RESULTS: The spot detection algorithm uses the à trous wavelet transform, a computationally inexpensive method that is robust to imaging noise. By combining automated with manual spot curation in the user interface, fluorescent puncta can be carefully selected and measured against their local background to extract high-quality single-cell data. Integrated into the workflow are segmentation and spot-inspection tools that enable almost real-time interaction with images without time consuming pre-processing steps. Although the software is agnostic to the type of puncta imaged, we demonstrate dNEMO using smFISH to measure transcript numbers in single cells in addition to the transient formation of IKK/NEMO puncta from time-lapse images of cells exposed to inflammatory stimuli. We conclude that dNEMO is an ideal user interface for rapid and accurate measurement of fluorescent molecular assemblies in biological imaging data. AVAILABILITY AND IMPLEMENTATION: The data and software are freely available online at https://github.com/recleelab. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microscopia , Software , Algoritmos , RNA Mensageiro/genética , Imagem com Lapso de Tempo
13.
Biomacromolecules ; 23(10): 4268-4281, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36094894

RESUMO

As a biodegradable elastomer, poly(1,8-octanediol-co-citrate) (POC) has been widely applied in tissue engineering and implantable electronics. However, the unclear degradation mechanism has posed a great challenge for the better application and development of POC. To reveal the degradation mechanism, here, we present a systematic investigation into in vivo and in vitro degradation behaviors of POC. Initially, critical factors, including chemical structures, hydrophilic and water-absorbency characteristics, and degradation reaction of POC, are investigated. Then, various degradation-induced changes during in vitro degradation of POC-x (POC with different cross-linking densities) are monitored and discussed. The results show that (1) cross-linking densities exponentially drop with degradation time; (2) mass loss and PBS-absorption ratio grow nonlinearly; (3) the morphology on the cross-section changes from flat to rough at a microscopic level; (4) the cubic samples keep swelling until they collapse into fragments from a macro view; and (5) the mechanical properties experience a sharp drop at the beginning of degradation. Finally, the in vivo degradation behaviors of POC-x are investigated, and the results are similar to those in vitro. The comprehensive assessment suggests that the in vitro and in vivo degradation of POC occurs primarily through bulk erosion. Inflammation responses triggered by the degradation of POC-x are comparable to poly(lactic acid), or even less obvious. In addition, the mechanical evaluation of POC in the simulated application environment is first proposed and conducted in this work for a more appropriate application. The degradation mechanism of POC revealed will greatly promote the further development and application of POC-based materials in the biomedical field.


Assuntos
Ácido Cítrico , Elastômeros , Materiais Biocompatíveis/química , Citratos , Elastômeros/química , Teste de Materiais , Polímeros , Água
14.
Inorg Chem ; 61(41): 16484-16492, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36194757

RESUMO

The occurrence of energy transfer (ET) would enhance the luminescence of the activator but sacrifice that of the sensitizer. However, the novel Sm3+-doped Ca2TbSn2Al3O12 (CTSAO) phosphor reported here seems to be an exception. In the series of CTSAO:xSm3+ phosphors investigated, something unexpected occurs; the activator, Sm3+, did not gain any energy compensation from the sensitizer, Tb3+, when temperature increases. Instead, when the loss of Sm3+ luminescence accelerates, simultaneously, the loss of Tb3+ luminescence accordingly alleviates. By careful calculations on the ET efficiency of the CTSAO:0.06Sm3+ phosphor at different temperatures, it is surprisingly found that the efficiency keeps decreasing as temperature increases. It means that the Tb3+-Sm3+ energy transfer is capable of being interrupted by an increasing temperature. By simulation, it is found that the occurrence of thermal interruption of energy transfer benefits the achievement of a higher temperature sensing sensitivity. In this sense, making use of the thermal interruption of energy transfer could become a novel route for further design of the fluorescence intensity ratio-type luminescence thermometers.

15.
Inorg Chem ; 60(4): 2219-2227, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33507746

RESUMO

Materials with near-infrared (NIR) persistent luminescence (PersL) and NIR-to-NIR photostimulated luminescence (PSL) properties are attractive platforms for photonic energy harvesting and release. In this work, we develop Mg2SnO4:Cr as a broadband NIR PersL and NIR-to-NIR PSL material (luminescence maxima at ∼800 nm) and reveal the origin of the PersL and PSL properties. The material has an inverse spinel structure with the Mg2+ and Sn4+ disorder at the Wyckoff 16d site based on the Rietveld refinement. Cr K-edge X-ray absorption near-edge structure (XANES) spectra uncover that the doped Cr ions have a +3 valence state and occupy the disordered (Mg,Sn) site with octahedral coordination. The disorder results in multiple Cr3+ centers, and the broadband luminescence originates from the 4T2(4F) → 4A2 transition of Cr3+ at sites with intermediate crystal field strength. The distribution of trap depths is continuous according to the analysis of thermoluminescence (TL) spectra using the initial rising method, which relates to the random distribution of Mg2+ and Sn4+ at the second coordination sphere of the Cr3+ centers rather than the oxygen-related defects. Stimulating the material with a NIR laser, the NIR PersL gets significantly enhanced due to a PSL process. The broadband PersL and PSL are detectable beyond 100 h and have good tissue penetrability and therefore the developed Mg2SnO4:Cr3+ has potential in applications of optical information storage/reading and autofluorescence-free bioimaging. Finally, three crystal and electronic structure factors are proposed for screening new Cr3+-activated PersL and PSL materials.

16.
Small ; 16(8): e1906985, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32003089

RESUMO

The blood-brain barrier (BBB) is the most important obstacle to improving the clinical outcomes of diagnosis and therapy of glioblastoma. Thus, the development of a novel nanoplatform that can efficiently traverse the BBB and achieve both precise diagnosis and therapy is of great importance. Herein, an intelligent nanoplatform based on holo-transferrin (holo-Tf) with in situ growth of MnO2 nanocrystals is constructed via a reformative mild biomineralization process. Furthermore, protoporphyrin (ppIX), acting as a sonosensitizer, is then conjugated into holo-Tf to obtain MnO2 @Tf-ppIX nanoparticles (TMP). Because of the functional inheritance of holo-Tf during fabrication, TMP can effectively traverse the BBB for highly specific magnetic resonance (MR) imaging of orthotopic glioblastoma. Clear suppression of tumor growth in a C6 tumor xenograft model is achieved via sonodynamic therapy. Importantly, the experiments also indicate that the TMP nanoplatform has satisfactory biocompatibility and biosafety, which favors potential clinical translation.


Assuntos
Barreira Hematoencefálica , Glioblastoma , Imageamento por Ressonância Magnética , Nanocompostos , Terapia por Ultrassom , Animais , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Camundongos , Camundongos Nus , Óxidos/química , Terapia por Ultrassom/métodos
17.
J Cell Physiol ; 234(8): 14210-14220, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30618073

RESUMO

Cigarette smoke-induced airway epithelial cell mitophagy is an important mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mitochondrial protein Nix (also known as BNIP3L) is a selective autophagy receptor and participates in several human diseases. However, little is known about the role of Nix in airway epithelial cell injury during the development of COPD. The aim of the present study is to investigate the effects of Nix on mitophagy and mitochondrial function in airway epithelial cells exposed to cigarette smoke extract (CSE). Our present study has found that CSE could increase Nix protein expression and induce mitophagy in airway epithelial cells. And Nix siRNA significantly inhibited mitophagy and attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. In contrast, Nix overexpression enhanced mitophagy and aggravated mitochondrial dysfunction and cell injury when airway epithelial cells were incubated with 7.5% CSE. These data suggest that Nix-dependent mitophagy promotes airway epithelial cell and mitochondria injury induced by cigarette smoke, and may be involved in the pathogenesis of COPD and other cigarette smoke-associated diseases.


Assuntos
Lesão Pulmonar/genética , Proteínas de Membrana/genética , Mitofagia/genética , Proteínas Proto-Oncogênicas/genética , Doença Pulmonar Obstrutiva Crônica/genética , Proteínas Supressoras de Tumor/genética , Brônquios/lesões , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Fumar Cigarros/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica/genética , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitofagia/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Nicotiana/efeitos adversos
18.
Microb Pathog ; 126: 310-317, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30419341

RESUMO

Pili have been demonstrated to contribute to the pathogenicity of many bacterial pathogens. Flp pilus encoded by the tad locus belongs to the type IVb pilus. Our previous study has revealed that the intact tad locus is essential for Flp pilus formation in Actinobacillus pleuropneumoniae, a very important porcine respiratory pathogen. To further investigate the functions of Flp pilus in A. pleuropneumoniae pathogenesis, the flp1 and tadD single deletion mutants were constructed by homologous recombination. Both of the mutant strains lost pilus on their cell surfaces. The abilities of biofilm formation, cell adhesion, resistance to phagocytosis, survival in swine whole blood, and in vivo colonization of the two mutants were significantly reduced compared with those of the parental strain. The corresponding complemented strains recovered the phenotypes. These results demonstrated that flp1 and tadD were essential for the biosynthesis of Flp pilus and that the pilus played important roles during infection of A. pleuropneumoniae.


Assuntos
Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Infecções por Actinobacillus/sangue , Actinobacillus pleuropneumoniae/crescimento & desenvolvimento , Animais , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Modelos Animais de Doenças , Feminino , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Recombinação Homóloga , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Fagocitose , Fenótipo , Deleção de Sequência , Virulência
19.
J Am Chem Soc ; 140(15): 5280-5289, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29595956

RESUMO

Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-1-3) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-2 was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m2), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Polímeros/síntese química , Reagentes de Ligações Cruzadas/química , Eletrodos , Ligação de Hidrogênio , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Conformação Molecular , Polímeros/química
20.
Ecotoxicol Environ Saf ; 162: 51-58, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29960914

RESUMO

The effects of iron plaque formation on chromium (Cr) uptake and accumulation by rice seedlings (Oryza sativa L.) were assessed using hydroponic and soil experiments, where each 3 levels of Fe supplementation were added to Hoagland solution (0, 30, and 100 mg Fe2+ L-1) and a typical paddy soil (0, 1, and 2 g Fe2+ kg-1). For each treatment, rice seedlings were exposed to different levels of Cr as chromate at 0, 0.5, 2, 5, 10, and 20 mg L-1 in solution or 300 mg kg-1 in soil. Low levels of Cr supply (0.5, 2, and 5 mg L-1) promoted root biomass, while high levels (10 and 20 mg L-1) decreased root and shoot biomass and undermined the density and integrity of iron plaque. Iron supply significantly increased the proportion of Cr in iron plaque, but decreased that in rice plants. The results of hydroponic experiment showed that iron plaque formed with Fe supply at 100 mg L-1 markedly reduced Cr accumulation in shoots of rice seedlings when exposure to 10 and 20 mg L-1 Cr. The soil culture experiment also demonstrated that exogenous Fe addition significantly decreased Cr concentration in leaf and stem of rice seedlings. These results suggested that iron plaque with appropriate amount was effective to reduce the uptake and accumulation of Cr in rice plants, which have strong implication for taking measures to regulate Cr accumulation in rice grains.


Assuntos
Cromo/metabolismo , Ferro/farmacologia , Oryza/metabolismo , Poluentes do Solo/metabolismo , Transporte Biológico , Biomassa , Hidroponia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA