Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255525

RESUMO

Polymer dispersed liquid crystals (PDLCs) have kindled a spark of interest because of their unique characteristic of electrically controlled switching. However, some issues including high operating voltage, low contrast ratio and poor mechanical properties are hindering their practical applications. To overcome these drawbacks, some measures were taken such as molecular structure optimization of the monomers and liquid crystals, modification of PDLC and doping of nanoparticles and dyes. This review aims at detailing the recent advances in the process, preparations and applications of PDLCs over the past six years.


Assuntos
Cristais Líquidos/química , Polímeros/química , Carbono , Corantes/química , Cristais Líquidos/ultraestrutura , Membranas Artificiais , Nanoestruturas , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Fosfatidiletanolaminas/química , Polimerização , Relação Estrutura-Atividade
2.
Soft Matter ; 11(4): 712-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25467212

RESUMO

A clear structure-property relationship was revealed in a series of triphenylene-based dimers, which contained two triphenylene nuclei each bearing five ß-OC4H9 substituents and are linked through a flexible O(CH2)nO polymethylene chain (n=6-12). Dimers with the linkage close to twice the length of the free side chains (n=8, 9) exhibited a single Colhp phase, while others with the linkage shorter (n=6, 7) or longer (n=10, 11, 12) showed multiphase behaviors with a transition from the Colhp phase to Colh phase; hole mobilities of Colhp phases reached 1.4×10(-2) cm2 V(-1) s(-1) in the dimer for which the linkage is exactly twice the length of the free side chains (n=8), and decreased regularly both with linkage length becoming shorter or longer. This modulation of phase behaviors and charge carrier mobilities was demonstrated to be generated by various steric perturbations introduced by linkages with different lengths, which result in different degrees of lateral fluctuations of discotic moieties in the columns.

3.
ACS Appl Bio Mater ; 7(1): 256-268, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109849

RESUMO

Antimicrobial resistance is a serious problem in biomedical applications that seriously increases the risk of medical failure. Therefore, developing highly efficient antibacterial agents that inhibit the growth of multidrug-resistant bacteria is a long-standing research goal. In this report, a low-cytotoxicity and highly efficient alternative to antibiotics was designed and prepared using edible corn starch as the scaffold and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) as the antimicrobial agent. The HTCC/starch particles were found to have a positively charged surface over a wide pH range and to possess broad-spectrum and highly efficient antimicrobial properties. These particles inhibited the growth of standard Gram-positive and Gram-negative bacteria from the China Pharmacopoeia and a clinical multidrug-resistant bacterial strain. Moreover, after treating the HTCC/starch particles with simulated gastric fluid (SGF, pH 1.2) for 4 h, the growth of clinical multidrug-resistant Escherichia coli (NT 2036) was inhibited effectively, indicating that these particles tolerate a gastric acid environment. Although the mass of SGF-treated HTCC/starch particles required to achieve similar antibacterial activity was ∼20-fold that of chloramphenicol or ampicillin, antibiotic-containing products require considerable amounts of pharmaceutical excipients to prepare. Therefore, the HTCC/starch particles described herein are potentially cost-effective alternatives to antibiotics that resolve the antimicrobial resistance issue, especially for inhibiting the growth of pathogenic intestinal bacteria.


Assuntos
Anti-Infecciosos , Quitosana , Antibacterianos/farmacologia , Antibacterianos/química , Zea mays , Amido/farmacologia , Quitosana/química , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia
4.
ACS Appl Mater Interfaces ; 15(25): 29982-29997, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37330942

RESUMO

The COVID-19 pandemic continues to spread worldwide. To protect and control the spread of SARS-CoV-2, varieties of subunit vaccines based on spike (S) proteins have been approved for human applications. Here, we report a new subunit vaccine design strategy that functions as both an antigen carrier and an adjuvant in immunization to elicit high-level immune responses. The complex of 2-hydroxypropyl-trimethylammonium chloride chitosan and amylose entangles Au nanoparticles (HTCC/amylose/AuNPs) forming 40 nm nanocarriers with a positive charge. The obtained positively charged nanoparticles reveal many merits, including the larger S protein loading capacity in PBS buffer, higher cellular uptake ability, and lower cell cytotoxicity, supporting their potential as safe vaccine nanocarriers. Two functionalized nanoparticle subunit vaccines are prepared via loading full-length S proteins derived from SARS-CoV-2 variants. In mice, both prepared vaccines elicit high specific IgG antibodies, neutralize antibodies, and immunoglobulin IgG1 and IgG2a. The prepared vaccines also elicit robust T- and B-cell immune responses and increase CD19+ B cells, CD11C+ dendritic cells, and CD11B+ macrophages at the alveoli and bronchi of the immunized mice. Furthermore, the results of skin safety tests and histological observation of organs indicated in vivo safety of HTCC/amylose/AuNP-based vaccines. Summarily, our prepared HTCC/amylose/AuNP have significant potential as general vaccine carriers for the delivery of different antigens with potent immune stimulation.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Amilose , Ouro , SARS-CoV-2/metabolismo , Pandemias , COVID-19/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Antígenos , Adjuvantes Farmacêuticos , Imunoglobulina G , Vacinas de Subunidades Antigênicas
5.
Int J Biol Macromol ; 194: 435-444, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801585

RESUMO

In this work, an edible cellulose-based antibacterial material was prepared by cross-linking α-cellulose and kanamycin sulfate via glutaraldehyde to form kanamycin sulfate-glutaraldehyde-cellulose. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction results indicated that the kanamycin sulfate molecule was cross-linked with the molecular chain of cellulose. The optimal mass ratio of kanamycin sulfate to α-cellulose was 1:100 and the degree of substitution reached 1.11%. The optimal kanamycin sulfate-glutaraldehyde-cellulose material showed an excellent inhabitation against both Gram-positive and Gram-negative bacteria. Meantime, the optimal kanamycin sulfate-glutaraldehyde-cellulose had a marked resistance to gastric acid and had low cell cytotoxicity. To promote the application of the kanamycin sulfate-glutaraldehyde-cellulose material, the porous microspheres were prepared via the sol-gel method. The particle size of the homogeneous porous microspheres is mainly distributed between 1.5 and 2.0 µm. Therefore, the kanamycin sulfate-glutaraldehyde-cellulose described herein is a potential edible, eco-friendly, potent, stable, inexpensive, and antibacterial carrier material for delivering drugs, proteins, or vaccines.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Celulose/farmacologia , Canamicina/farmacologia , Animais , Chlorocebus aethiops , Células Vero
6.
RSC Adv ; 8(39): 21690-21698, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35541754

RESUMO

A novel light diffuser based on a thermally cured polymer dispersed liquid crystal (PDLC) film was facilely fabricated by the thermal curing of epoxy monomers with thiols and polyamine (PA) in a composite solution of monomers and liquid crystals (LCs) sandwiched by two clean polyethylene terephthalate (PET) substrates. Varied amounts of LCs, diluent effects of epoxy resins and thiols and different curing temperatures have been investigated in the preparation of the films, and the optical properties (total transmittance and transmittance haze) and the light diffusing abilities of these films were also studied. As the microstructures of the polymers in the films were analysed using light scattering theory, it was revealed that the total transmittance of the novel light diffuser, with a combined polymer morphology of polymer networks and polymer balls, can reach 93% by simultaneously possessing a high transmittance haze (95%). The novel light diffuser, based on thermally cured PDLCs, possesses a good diffusion capacity and will have promising potential applications in military projects and liquid crystal display (LCDs) devices.

7.
Sci Adv ; 4(10): eaat5383, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30310867

RESUMO

High-energy lithium metal batteries (LMBs) are expected to play important roles in the next-generation energy storage systems. However, the uncontrolled Li dendrite growth in liquid electrolytes still impedes LMBs from authentic commercialization. Upgrading the traditional electrolyte system from liquid to solid and quasi-solid has therefore become a key issue for prospective LMBs. From this premise, it is particularly urgent to exploit facile strategies to accomplish this goal. We report that commercialized liquid electrolyte can be easily converted into a novel quasi-solid gel polymer electrolyte (GPE) via a simple and efficient in situ gelation strategy, which, in essence, is to use LiPF6 to induce the cationic polymerization of the ether-based 1,3-dioxolane and 1,2-dimethoxyethane liquid electrolyte under ambient temperature. The newly developed GPE exhibits elevated protective effects on Li anodes and has universality for diversified cathodes including but not restricted to sulfur, olivine-type LiFePO4, and layered LiNi0.6Co0.2Mn0.2O2, revealing tremendous potential in promoting the large-scale application of future LMBs.

8.
ACS Appl Mater Interfaces ; 9(10): 8759-8765, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28230341

RESUMO

A well-organized selenium/carbon nanosheets nanocomposite(Se/CNSs) is prepared by confining chain-like Sen molecules in hierarchically micromesoporous carbon nanosheets. A unique two-dimensional morphology and high graphitization degree of carbon nanosheets benefits fast Li+/e- access to the active Se, which guarantees a high utilization of Se during the(de)lithiation process. Besides, the chain-like Se molecules confined in the carbon matrix could alleviate the shuttle effect of polyselenides and promise a stable electrochemistry. Therefore, the resultant Se/CNSs delivers a highly reversible capacity, a long cycle life and favorable rate capabilities. Furthermore, a Li-Se pouch cell built from a metallic Li anode and the as-prepared Se/CNSs cathode exhibits an excellent electrochemical performance, demonstrating the potential of Se/CNSs in serving future energy storage devices with high energy density.

9.
J Phys Chem B ; 121(31): 7519-7525, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28727460

RESUMO

A series of discotic liquid crystals based on hexapentyloxytriphenylene (HAT5) have been investigated where one out of the six ether side chains of a triphenylene core was replaced by an ester side chain and named for 5a-5h. During the process of studying these compounds, the characteristic straight line defect of ordered columnar structure was identified by polarizing optical microscopy (POM) and liquid crystal state over a wide temperature range was obtained by differential scanning calorimetry (DSC). Basic phase structure and molecular arrangement were assigned by one-dimensional wide-angle X-ray diffraction (1D WAXD), small-angle X-ray scattering (SAXS), two-dimensional wide-angle X-ray diffraction (2D WAXD), and transmission electron microscope (TEM). Combined with sharp and regular dots in 2D WAXD patterns and characteristic peaks at small angle in SAXS pattern which indicated the existence of superlattice, we proved that 2D superlattice formed from self-assembly of discotic molecules with a polar group via π-π stacking and dipole-dipole interaction. In order to verify the effect of orientation on charge carrier mobility, their electron and hole mobilities were measured by time-of-flight (TOF) device, among which the charge carrier mobility could achieve almost twice as that of HAT5. The formation of superlattice no doubt improved their electronic properties and made them more attractive in organic electronics.

10.
ACS Appl Mater Interfaces ; 8(6): 3584-90, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26378622

RESUMO

An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

11.
Nat Commun ; 6: 8058, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26299379

RESUMO

Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA