Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 47(19): 5028-5031, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181178

RESUMO

A novel implementation of high-spectral-resolution LIDAR based on a passively Q-switched few-longitudinal mode laser (PQFLM-HSRL) is proposed, and the prototype is built for detecting aerosol and cloud characteristics. The spatial-temporal distributions of the aerosol and cloud are continuously observed by the PQFLM-HSRL for the first time, to the best of our knowledge. Based on observation, we present the retrieval results of backscatter coefficient, particle linear depolarization ratio, and LIDAR ratio, and these intensive parameters are used to classify the aerosol and cloud into different types. Particularly, we have observed mix-phased clouds. The resulting aerosol optical depths (AODs) are highly consistent with CE-318, the Sun photometer measurements of the local National Meteorological Station (NMS), which verify the retrieval accuracy and the system stability. In addition, the retrieved AODs also characterize the ambient air quality, which show a high correlation with the measured PM2.5 concentrations. The implementation of the PQFLM-HSRL provides a new method for atmospheric feature detection, which shows superior scientific potential for further study on climate change and environmental health.

2.
Chemosphere ; 266: 129236, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310365

RESUMO

A composite photocatalyst combined with TiO2, graphite (G) and Fe3O4 was prepared by co-precipitation method. Then the G-TiO2@Fe3O4 was employed with persulfate (PS) to degrade alizarin red S (ARS) under visible light. The removal rate of ARS reached 100% after 60 min irradiation. The degradation rate constant of G-TiO2@Fe3O4/PS exhibited 20.8, 9.0 and 3.1 times than that of TiO2, G-TiO2 and G-TiO2@Fe3O4, respectively. The effects of photocatalyst dosage, mass ratios of graphite and Fe3O4 to TiO2, PS dosage, initial pH and ARS concentration on the degradation efficiency were investigated. The optimal removal efficiency of ARS was obtained when G-TiO2@Fe3O4 dosage was 0.25 g/L, G: TiO2 = 0.005, Fe3O4: TiO2 = 0.8, PS concentration was 6 mmol/L, initial pH = 3, and initial concentration of ARS was 100 mg/L. The SO4·- was demonstrated more important than O2- and·OH in the degradation of ARS. The intermediates and possible degradation pathways of ARS were discussed. Reuse and stability of G-TiO2@Fe3O4 were also tested, and 88.3% photocatalytic activity was maintained after five cycles. Therefore, the proposed G-TiO2@Fe3O4/PS not only had excellent photocatalytic activity, but also showed superior stability and reusability.


Assuntos
Luz , Titânio , Antraquinonas , Catálise
3.
J Hazard Mater ; 366: 669-676, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30580141

RESUMO

A coupling technique introducing sodium percarbonate (SPC) into a dielectric barrier discharge (DBD) plasma was investigated to enhance the degradation of antibiotic tetracycline (TC) in aqueous. The dominant effects of SPC addition amount and discharge voltage were evaluated firstly. The experiments indicated that the moderate SPC dosages in the DBD presented an obvious synergistic effect, improving the TC decomposition efficiency and kinetics. Elevating the voltage was conducive for the promotion of antibiotic abatement. After 5 min treatment, the removal reached 94.3% at the SPC of 52.0 µmol/L and voltage of 4.8 kV for 20 mg/L TC. Especially the defined synergy factors were greater than one since the SPC being added, and the energy yield was increased by 155%. Besides, the function mechanism was explained by the hydrogen peroxide and ozone quantitative determinations and radical scavenger test, and the results confirmed that the collaborative method could increase the generation of reactive species, and the produced hydroxyl and superoxide radicals both played the significant roles for the TC elimination. Furthermore, the decomposition and mineralization of the synergism were verified by UV-vis spectroscopy, TOC and COD analyses, and the degradation byproducts and transformation pathways were identified based on the analysis of HPLC-MS finally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA