Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
ScientificWorldJournal ; 2014: 979750, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987750

RESUMO

Westag 97 has larger capacity of Cd accumulation in roots which prevents Cd from translocating into stems and leaves; conversely, AC Hime has smaller capacity of Cd accumulation in roots; more Cd is transported into stems and leaves. The different capacity of Cd in roots between Westag 97 and AC Hime causes the different Cd concentration in seeds. Meanwhile, according to the different expression levels of RSTK, ISCP, and H(+)-ATPase between Westag 97 and AC Hime, RSTK may be involved in transporting Cd into stems and leaves; H(+)-ATPase may be correlated to the capacity of Cd accumulation in roots; and Cd caused some changes of fundamental life process which leaded to the different expression patterns of ISCP between Westag 97 and AC Hime.


Assuntos
Cádmio/farmacologia , Genes de Plantas , Glycine max/efeitos dos fármacos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glycine max/genética , Glycine max/metabolismo
2.
J Environ Qual ; 53(1): 112-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37909247

RESUMO

The continuous use of organic inputs in crop production calls for an improved understanding of how these inputs might alter soil phosphorus (P). This study assessed how the continuous application of different forms of swine manure influences the mechanism of P transformation and release potential. Soil samples were collected from a clay loam soil receiving no P or 100 kg P ha-1 applied as either chemical fertilizer (CHEM), swine liquid manure (SWL), composted swine manure (SWC), or solid swine manure (SWS) every other year for 16 years in a corn-soybean rotation. Available P increased in soils treated with the chemical and organic fertilizers. The greatest increase was found in the SWC and SWS and was closely related to a 1% increase in the organic C content, and 1.3- and 1.2-unit increase in the soil pH for SWC and SWS treatment, respectively. Nonlabile HCl-P form was also higher in SWC- and SWS-treated soils. Despite the similarities between SWS and SWC, SWS significantly had a lower maximum P sorption (Qmax ) and higher equilibrium P concentration at zero net sorption (EPCO) probably related to the higher organic NaOH-P. Similarly, higher organic NaOH-P together with lower cation exchange capacity, aluminum, and calcium explained the lower Qmax in SWL. This suggests that increase in organic NaOH-P forms limits the soil potential to retain P. Overall, the SWL treatment presents a unique effect on changes in soil property and P chemistry that warrants further investigation.


Assuntos
Fósforo , Solo , Animais , Suínos , Fósforo/química , Solo/química , Fertilizantes , Esterco , Hidróxido de Sódio
3.
J Environ Qual ; 51(6): 1129-1143, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35809793

RESUMO

Fertilizer and water management practices have short- and long-term effects on soil chemical and physical properties and, in turn, greenhouse gas (GHG) emissions. The goal of this 4-yr field study was to establish the relationships between soil properties, agronomic practices, and GHG (CO2 and N2 O) emissions under different fertilizer and water table management practices. There were two fertilizer treatments: inorganic fertilizer (IF) and a mix of solid cattle manure and inorganic fertilizer (SCM), combined with tile drainage(DR) and controlled drainage with subirrigation(CDS). The cropping system was a maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Nitrogen in biomass (BMN) and N in grain (GRN) were measured and used to calculate other plant N parameters. Nitrous oxide and CO2 fluxes were collected weekly, and their respective cumulative emissions were calculated. The results show that soil organic matter (OM), soil total carbon (C), and soil total nitrogen (N) were greater in SCM than IF by 23.7, 35.2, and 24.4%, respectively. Water table management did not significantly affect soil N and C. Increased CO2 emissions were witnessed under higher soil OM, soil total C, and total N. Plant N uptake parameters were negatively correlated with N2 O and CO2 emissions. Higher plant N uptake can reduce environmental pollution by limiting N2 O and CO2 emissions.


Assuntos
Gases de Efeito Estufa , Bovinos , Animais , Solo/química , Fertilizantes , Dióxido de Carbono/análise , Óxido Nitroso/análise , Nitrogênio/análise , Zea mays , Nutrientes , Glycine max , Agricultura/métodos , Metano/análise
4.
Pharmacol Res Perspect ; 10(3): e00954, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568994

RESUMO

Advanced hepatocellular carcinoma (HCC) results in generally poor clinical outcomes and necessitates better therapeutic strategies. Ivermectin, which is an existing anti-parasitic drug, has been recently identified as a novel anti-cancer drug. In line with previous efforts, this work demonstrates the translational potential of ivermectin to treat advanced HCC. We demonstrated that ivermectin at clinically relevant concentrations was active against growth and survival in multiple HCC cell lines. We showed that ivermectin had the potential to inhibit metastasis and target HCC stem cell functions. Mechanism studies correlated well with cellular phenotypes observed in ivermectin-treated cells, and demonstrated inhibition of mTOR/STAT3 pathway, suppression of epithelial mesenchymal transition (EMT) and reduced expression of stem cell markers. We further demonstrated that ivermectin inhibited tumor formation and growth in HCC xenograft mouse model, without causing significant toxicity in the mice. Using combination index (CI), we showed that ivermectin and sorafenib were synergistic in HCC in vitro, and this was further confirmed in vivo. Our work demonstrates the potent anti-HCC activities of ivermectin and its multiple targets on essential oncogenic pathways. Our findings provide preclinical evidence to initialize clinical trial using ivermectin and sorafenib for treating advanced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Neoplasias Hepáticas/genética , Camundongos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
5.
Sci Total Environ ; 845: 157200, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810887

RESUMO

Animal manure can be a serious environmental concern if improperly managed, particularly with regard to phosphorus (P). A good understanding on manure P chemistry is required for improving manure management in an environmentally sustainable manner. In the study, 102 representative manure samples collected from farms of major intensive livestock areas of Canada were sequentially fractionated with H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl, respectively, for measuring inorganic (Pi) and organic P (Po). Across the manures, total P (TP) ranged from 3.71 to 17.3 g kg-1, with total Pi and available P (i.e., the sum of H2O-Pi and NaHCO3-Pi) accounting for 67.0-92.4 % and 35.6-67.3 % of TP, respectively. Composting reduced the percentages of available P and Po in TP, and meanwhile increased the percentages of moderately stable HCl-Pi. Compared to other P fractions, manure available P increased more rapidly with increases in TP; once manure TP reached 7.8-9.6 g kg-1, further TP increase enhanced transformation to more recalcitrant P (i.e., NaOH-Pi and HCl-Pi). Under Canadian conditions, manure application to meet the demand of crops for N would lead to P buildup in the soil at rates of 6.1-41.6 kg P ha-1 yr-1, increasing runoff P loss risk. Manure compost and poultry manure tend to cause rapid P buildup in the soil after land application and become a long-term P source for runoff losses. The results help to develop scientifically-sound manure-specific P management technologies which would enable farmers to achieve sustainable crop production with improved environment.


Assuntos
Esterco , Fósforo , Animais , Canadá , Fósforo/análise , Hidróxido de Sódio , Solo
6.
Cancer Manag Res ; 13: 247-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469368

RESUMO

BACKGROUND: Accruing evidences have pointed out that abnormal expression of circular RNAs (circRNAs) was closely related to the development of many malignancies. The present study intended to disclose the role of circRNA eukaryotic translation initiation factor 6 (circEIF6; hsa_circ_0060055) in pancreatic cancer progression. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of circEIF6, EIF6 messenger RNA (mRNA), microRNA-557 (miR-557) and solute carrier family 7 member 11 (SLC7A11) mRNA. Cell proliferation ability, migration and invasion abilities and apoptosis were evaluated by Cell Counting Kit 8 (CCK8) assay, transwell migration and invasion assays and flow cytometry. Western blot assay was performed for the expression determination of all proteins. The predicted interaction between miR-557 and circEIF6 or SLC7A11 was confirmed by dual-luciferase reporter assay. Xenograft tumor model was used for exploring the biological function of circEIF6 in vivo. RESULTS: CircEIF6 abundance was aberrantly up-regulated in pancreatic tumor tissues and cell lines. Cell proliferation, migration and invasion were significantly restrained while cell apoptosis was induced with the silencing of circEIF6 in pancreatic cancer cells. CircEIF6 silencing also hampered the activation of phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) pathway. CircEIF6 bound to miR-557, and circEIF6 silencing elevated the expression of miR-557 in pancreatic cancer cells. MiR-557 knockdown partly overturned circEIF6 silencing-induced effects in pancreatic cancer cells. SLC7A11 was a target of miR-557, and miR-557 overexpression suppressed malignant potential of pancreatic cancer cells partly through reducing the expression of SLC7A11. CircEIF6 knockdown blocked xenograft tumor growth in vivo. CONCLUSION: CircEIF6 aggravated pancreatic cancer development through promoting cell proliferation, migration and invasion and suppressing cell apoptosis through targeting miR-557/SLC7A11/PI3K/AKT signaling.

7.
Materials (Basel) ; 14(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069338

RESUMO

Nickel (Ni+2) accumulation in wastewater treatment sludge poses a potential environmental risk with biosolids-land application. An incubation experiment was conducted to evaluate the effect of nanoparticles of zero-valent iron (nZVI) on Ni+2 sorption in biosolids-treated agricultural soils. Two application rates of biosolids (0, 5%, w/w) and four treatment levels (0, 1, 5, and 10 g/kg) of nZVI were examined, either separately or interactively. The results of this study showed significant differences in Ni+2 sorption capacity between different nZVI treatments. The initial Ni+2 concentration in biosolids-amended soil significantly affected Ni sorption in the soil treated with nZVI. The "H-shape" of sorption isotherm in nZVI-treated soil reflects strong interaction between the Ni concentration and the nZVI treatment, while the C-shape of sorption isotherm in biosolids-amended soil without the nZVI treatment indicates intermediate affinity for Ni+2 sorption. Nickel retention in soil was increased with the increase of nZVI levels. The removal efficiency of Ni+2 by nZVI from solution was increased with the increase of pH from 5 to 11 and reached a maximum of 99.56% at pH 11 and nZVI treatment of 10 g/kg. The Ni+2 desorption rate decreased from 92 to 7, 4, and 1% with increasing nZVI treatment levels from 0 to 1, 5, and 10 g/kg, respectively, with a soil Ni+2 concentration of 50 mg/L. The maximum adsorption capacity (?max) of 10 g/kg nZVI-treated soil was 333.3 mg/g, which was much higher than those from the other treatments of 0 (5 mg/g), 1 (25 mg/g), and 5 g/kg (125 mg/g). The underlying mechanism for Ni+2 immobilization using nZVI in an aquatic environment is controlled by a sorption process, reduction of metal ion to zero-valent metal, as well as (co)precipitation. Moreover, increasing the nZVI treatment level in biosolids-amended soil significantly decreased bioavailable Ni+2 concentrations in the soil.

8.
Cancer Chemother Pharmacol ; 87(2): 217-228, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33226447

RESUMO

BACKGROUND: The survival benefit of sorafenib, the most used drug for advanced hepatocellular carcinoma (HCC), is unsatisfactory due to the development of adaptive resistance. Exploring the mechanisms underlying sorafenib resistance is important to develop sensitizing strategy. Sphingomyelin synthase (SMS) plays a critical role in sphingolipid metabolism which is involved in oncogenesis and drug resistance. METHODS: SMS1 and SMS2 levels in HCC cells in response to prolonged chemotherapy were analyzed using ELISA. mRNA and protein levels of SMS in HCC and adjacent normal tissues were analyzed by ELISA and real-time PCR. The roles of SMS and its downstream targets were investigated using cellular and biochemical assays and mass spectrometry. RESULTS: SMS1, but not SMS2, was upregulated in HCC in response to sorafenib treatment, although HCC displayed similar RNA and protein level of SMS1 compared to adjacent normal liver tissues. Overexpression of SMS1 promoted HCC growth and migration, and alleviated sorafenib's toxicity. SMS1 inhibition via genetic and pharmacological approaches consistently resulted in inhibition of growth and migration, and apoptosis induction in sorafenib-resistance HCC cells. SMS1 inhibition also augmented the efficacy of sorafenib in sensitive HCC cells. SMS1 inhibition disrupted sphingolipid metabolism via accumulating ceramide and decreasing sphingomyelin, inducing mitochondrial dysfunction and oxidative stress, and decreasing Ras activity in resistant cells. Overexpression of constitutively active Ras reversed the inhibitory effects of SMS1 inhibition. Although SMS1 overexpression did not affect Ras expression and activity, Pearson correlation coefficient analysis of SMS1 and Ras expression demonstrated that there was positive correlation between SMS1 and RAS (NRAS, R = 0.55, p < 0.01; KRAS, R = 0.44, p < 0.01). CONCLUSIONS: Our work is the first to suggest that SMS1 plays a more important role in sorafenib resistance than tumorigenesis, and provides preclinical evidence to overcome sorafenib resistance with SMS1 inhibition in HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Sorafenibe/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Adulto , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Ceramidas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Metabolismo dos Lipídeos/fisiologia , Neoplasias Hepáticas/patologia , Esfingomielinas/metabolismo , Regulação para Cima/genética , Proteínas ras/metabolismo
9.
J Environ Qual ; 49(5): 1203-1224, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016450

RESUMO

Phosphorus (P) losses from nonpoint sources into surface water resources through surface runoff and tile drainage play a significant role in eutrophication. Accordingly, the number of studies involving the modeling of agricultural P losses, the uncertainties of such models, and the best management practices (BMPs) supported by the modeling of hypothetical P loss reduction scenarios has increased significantly around the world. Many improvements have been made to these models: separate manure P pools, variable source areas allowing the determination of critical source areas of P loss, analyses of modeling uncertainties, and understanding of legacy P. However, several elements are still missing or have yet to be sufficiently addressed: the incorporation of preferential flow into models, the modification of P sorption-desorption processes considering recent research data (e.g., pedotransfer functions for labile, active, or stable P, along with P sorption coefficients), BMP parameterization, and scale-up issues, as well as stakeholder-scientist and experimentalist-modeler interactions. The accuracy of P loss modeling can be improved by (a) incorporating dynamic P sorption-desorption processes and new P subroutines for direct P loss from manure, fertilizer, and dung, (b) modeling preferential flow, connectivity between field and adjacent water bodies, and P in-stream processes, (c) including an assessment of model uncertainty, (d) integrating field and watershed models for BMP calibration and scaling field results up to larger areas, and (e) building a holistic interaction between stakeholders, experimentalists, and modelers.


Assuntos
Agricultura , Fósforo , Eutrofização , Fertilizantes , Esterco
10.
J Environ Qual ; 48(4): 995-1005, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31589663

RESUMO

Prediction of P losses from manured agricultural fields through surface runoff and tile drainage is necessary to mitigate widespread eutrophication in water bodies. However, present water quality models are weak in predicting P losses, particularly in tile-drained and manure-applied cropland. We developed a field-scale P management model, the Root Zone Water Quality Model version 2-Phosphorus (RZWQM2-P), whose accuracy in simulating P losses from manure applied agricultural field is yet to be tested. The objectives of this study were (i) to assess the accuracy of this new model in simulating dissolved reactive phosphorus (DRP) and particulate phosphorus (PP) losses in surface runoff and tile drainage from a manure amended field, and (ii) to identify best management practices to mitigate manure P losses including water table control, manure application timing, and spreading methods by the use of model simulation. The model was evaluated against data collected from a liquid cattle manure applied field with maize ( L.)-soybean [ (L.) Merr.] rotation in Ontario, Canada. The results revealed that the RZWQM2-P model satisfactorily simulated DRP and PP losses through both surface runoff and tile drainage (Nash-Sutcliffe efficiency > 0.50, percentage bias within ±25%, and index of agreement > 0.75). Compared with conventional management practices, manure injection reduced the P losses by 18%, whereas controlled drainage and winter manure application increased P losses by 13 and 23%, respectively. The RZWQM2-P is a promising tool for P management in manured and subsurface drained agricultural field. The injection of manure rather than controlled drainage is an effective management practice to mitigate P losses from a subsurface-drained field.


Assuntos
Esterco , Fósforo , Agricultura , Animais , Canadá , Bovinos , Chuva , Movimentos da Água , Qualidade da Água
11.
Biophys J ; 94(3): 772-83, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17921216

RESUMO

We use discrete event stochastic simulations to characterize the parameter space of a model of icosahedral viral capsid assembly as functions of monomer-monomer binding rates. The simulations reveal a parameter space characterized by three major assembly mechanisms, a standard nucleation-limited monomer-accretion pathway and two distinct hierarchical assembly pathways, as well as unproductive regions characterized by kinetically trapped species. Much of the productive parameter space also consists of border regions between these domains where hybrid pathways are likely to operate. A simpler octamer system studied for comparison reveals three analogous pathways, but is characterized by much lesser sensitivity to parameter variations in contrast to the sharp changes visible in the icosahedral model. The model suggests that modest changes in assembly conditions, consistent with expected differences between in vitro and in vivo assembly environments, could produce substantial shifts in assembly pathways. These results suggest that we must be cautious in drawing conclusions about in vivo capsid self-assembly dynamics from theoretical or in vitro models, as the nature of the basic assembly mechanisms accessible to a system can substantially differ between simple and complex model systems, between theoretical models and simulation results, and between in vitro and in vivo assembly conditions.


Assuntos
Capsídeo/química , Capsídeo/fisiologia , Modelos Biológicos , Modelos Químicos , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/fisiologia , Montagem de Vírus/fisiologia , Capsídeo/ultraestrutura , Simulação por Computador , Modelos Moleculares , Modelos Estatísticos , Processos Estocásticos , Proteínas Estruturais Virais/ultraestrutura
12.
J Agric Food Chem ; 56(6): 2131-8, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17973446

RESUMO

Nonpoint phosphorus (P) pollution from animal manure is becoming a serious global problem. The current solution for the swine industry includes the enzyme phytase as a component in oil meal and cereal grain-based swine diets. A long-term approach is the production of transgenic phytase pigs that express phytase in the salivary glands and secrete it in the saliva. This study provides a detailed comparison of chemical structures of manure from conventional pigs and transgenic pigs that express phytase under growing and finishing phases using new solid-state NMR techniques. Spectral editing techniques and quantitative NMR techniques were used to identify and quantify specific functional groups. Two-dimensional (1)H- (13)C heteronuclear correlation NMR was used to detect their connectivity. Manure from conventional and transgenic pigs had similar peptide, carbohydrate, and fatty acid components, while those from transgenic pigs contained more carbohydrates and fewer nonpolar alkyls. There was no consistent effect from diets with or without supplemental phosphate or growth stages.


Assuntos
6-Fitase/genética , Animais Geneticamente Modificados/metabolismo , Esterco/análise , Suínos/metabolismo , 6-Fitase/metabolismo , Animais , Animais Geneticamente Modificados/genética , Carboidratos/análise , Ácidos Graxos/análise , Expressão Gênica , Espectroscopia de Ressonância Magnética , Peptídeos/análise , Glândulas Salivares/enzimologia , Suínos/genética , Suínos/crescimento & desenvolvimento
13.
IEEE Trans Nanobioscience ; 6(3): 235-41, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17926782

RESUMO

As self-assembled nanotechnology tackles increasingly complicated structures, biological self-assembly can teach us a great deal about the challenges of more complicated self-assemblies relative to the simpler systems accessible in current practice. The present study uses computer simulations of spherical assemblies inspired by virus capsids to understand the challenges artificial self-assembly systems will face as they approach biological levels of complexity. We quantify system complexity by two parameters-the total size of the completed structure in assembly monomers and the size of the first stable assembly nucleus. Simulations on a set of five model systems capturing a range of values for both parameters reveal several obstacles to extrapolating experience with simple systems to more complex ones. Assemblies of greater size result in total yields and assembly fidelities that are substantially more sensitive to the system parameters of intersubunit binding rates and to concentrations than are those of simpler assemblies. Larger nuclei partially mitigate these effects. Conversely, large assemblies have overall assembly rates with reduced sensitivity to system parameters, a feature that is also only partly mitigated by large nuclei. These changes can be partially understood by theoretical models based on nucleation processes, but such theory itself becomes less informative for the larger systems. We close with a consideration of mechanisms by which these obstacles may be overcome in actual viral systems.


Assuntos
Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Vírion/química , Vírion/fisiologia , Montagem de Vírus/fisiologia , Capsídeo/química , Capsídeo/fisiologia , Capsídeo/ultraestrutura , Simulação por Computador , Vírion/ultraestrutura
14.
J Environ Qual ; 36(5): 1357-67, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17636298

RESUMO

The correlation of runoff phosphorus (P) with water-extractable phosphorus (WEP) in land-applied manures and biosolids has spurred wide use of WEP as a water quality indicator. Land managers, planners, and researchers need a common WEP protocol to consistently use WEP in nutrient management. Our objectives were to (i) identify a common WEP protocol with sufficient accuracy and precision to be adopted by commercial testing laboratories and (ii) confirm that the common protocol is a reliable index of runoff P. Ten laboratories across North America evaluated alternative protocols with an array of manure and biosolids samples. A single laboratory analyzed all samples and conducted a separate runoff study with the manures and biosolids. Extraction ratio (solution:solids) was the most important factor affecting WEP, with WEP increasing from 10:1 to 100:1 and increasing from 100:1 to 200:1. When WEP was measured by a single laboratory, correlations with runoff P from packed soil boxes amended with manure and biosolids ranged from 0.79 to 0.92 across all protocol combinations (extraction ratio, filtration method, and P determination method). Correlations with P in runoff were slightly lower but significant when WEP was measured by the 10 labs (r=0.56-0.86). Based on laboratory repeatability and water quality evaluation criteria, we recommend the following common protocol: 100:1 extraction ratio; 1-h shaking and centrifuge 10 min at 1500xg (filter with Whatman #1 paper if necessary); and determining P by inductively coupled plasma-atomic emission spectrometry or colorimetric methods.


Assuntos
Monitoramento Ambiental/métodos , Esterco/análise , Fósforo/análise , Água/química , Agricultura , Animais , Conservação dos Recursos Naturais , Fósforo/isolamento & purificação , Chuva , Poluição da Água/prevenção & controle
15.
J Environ Qual ; 35(4): 1319-28, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16825451

RESUMO

Phytic acid (inositol hexaphosphoric acid, IP6) has long been recognized as the predominant organic P form in soil and animal manure. Whereas many studies have investigated the wet chemistry of IP6, there is little information on the characterization of solid metal IP6 compounds. This information is essential for further understanding and assessing the chemical behavior of IP6 in diverse soil-plant-water ecosystems. As the first step in full characterization, we synthesized eight metal phytate compounds and investigated their structural features using Fourier transform infrared spectroscopy (FT-IR). The absorption features from 900 to 1200 cm(-1) in FT-IR could be used to identify these phytates as: (i) light divalent metal (Ca and Mg) compounds with a sharp band and a broad band, (ii) heavy divalent metal (Cu and Mn) compounds with splitting broad bands, and (iii) trivalent metal (Al and Fe) compounds with a broad band and a shoulder band. Three different types of chemical structures of metal-phytate compounds were presented based on the FT-IR information. We further demonstrated that metal orthophosphates possessed different FT-IR spectral characteristics from their IP6 counterparts. The unique spectral features of metal phytates from 1000 to 700 cm(-1) could be used to distinguish phytate compounds from metal phosphate compounds. Thus, FT-IR analysis after fine tuning could provide an analytical tool to investigate the basic metal phytate chemistry in molecular levels, such as the competitive interactions between phosphate and phytate with a specific metal ion, and the conversion (or hydrolysis) of metal phytate to metal phosphate under various conditions.


Assuntos
Metais/análise , Metais/química , Ácido Fítico/análise , Ácido Fítico/química , Poluentes do Solo/análise , Animais , Cátions , Esterco , Fosfatos/análise , Fosfatos/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
17.
Biophys J ; 90(1): 57-64, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16214864

RESUMO

The process by which hundreds of identical capsid proteins self-assemble into icosahedral structures is complex and poorly understood. Establishing constraints on the assembly pathways is crucial to building reliable theoretical models. For example, it is currently an open question to what degree overall assembly kinetics are dominated by one or a few most efficient pathways versus the enormous number theoretically possible. The importance of this question, however, is often overlooked due to the difficulties of addressing it in either theoretical or experimental practice. We apply a computer model based on a discrete-event simulation method to evaluate the contributions of nondominant pathways to overall assembly kinetics. This is accomplished by comparing two possible assembly models: one allowing growth to proceed only by the accretion of individual assembly subunits and the other allowing the binding of sterically compatible assembly intermediates any sizes. Simulations show that the two models perform almost identically under low binding rate conditions, where growth is strongly nucleation-limited, but sharply diverge under conditions of higher association rates or coat protein concentrations. The results suggest the importance of identifying the actual binding pattern if one is to build reliable models of capsid assembly or other complex self-assembly processes.


Assuntos
Biofísica/métodos , Proteínas do Capsídeo/química , Capsídeo/química , Simulação por Computador , Difusão , Cinética , Modelos Biológicos , Modelos Moleculares , Modelos Estatísticos , Ligação Proteica , Software , Fatores de Tempo , Proteínas Virais , Vírus/metabolismo
18.
Biol Chem ; 383(3-4): 649-62, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12033454

RESUMO

Proteins with reactive sulfhydryls are central to many important metabolic reactions and also contribute to a variety of signal transduction systems. In this report, we examine the mechanisms of oxidative damage to the two reactive sulfhydryls of carbonic anhydrase III. Hydrogen peroxide (H2O2), peroxy radicals, or hypochlorous acid (HOCl) produced irreversibly oxidized forms, primarily cysteine sulfinic acid or cysteic acid, of carbonic anhydrase III if glutathione (GSH) was not present. When GSH was approximately equimolar to protein thiols, irreversible oxidation was prevented. H202 and peroxyl radicals both generated S-glutathiolated carbonic anhydrase III via partially oxidized protein sulfhydryl intermediates, while HOCl did not cause S-glutathiolation. Thus, oxidative damage from H202 or AAPH was prevented by protein S-glutathiolation, while a direct reaction between GSH and oxidant likely prevents HOCl-mediated protein damage. In cultured rat hepatocytes, carbonic anhydrase III was rapidly S-glutathiolated by menadione. When hepatocyte glutathione was depleted, menadione instead caused irreversible oxidation. We hypothesized that normal depletion of glutathione in aged animals might also lead to an increase in irreversible oxidation. Indeed, both total protein extracts and carbonic anhydrase III contained significantly more cysteine sulfinic acid in older rats compared to young animals. These experiments show that, in the absence of sufficient GSH, oxidation reactions lead to irreversible protein sulfhydryl damage in purified proteins, cellular systems, and whole animals.


Assuntos
Envelhecimento/fisiologia , Anidrases Carbônicas/metabolismo , Glutationa/metabolismo , Compostos de Sulfidrila/metabolismo , Animais , Cinética , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley , Ácidos Sulfônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA