Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Epigenetics ; 16(1): 11, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212818

RESUMO

BACKGROUND: As an oncovirus, EBV is associated with multiple cancers, including solid tumors and hematological malignancies. EBV methylation plays an important role in regulating tumor occurrence. However, the EBV methylation profiles in EBV-associated tumor tissues are poorly understood. RESULTS: In this study, EBV methylation capture sequencing was conducted in several different tumor tissue samples, including NPC, EBVaGC, lung LELC and parotid LELC. Besides, EBV capture sequencing and following qMSP were performed on nasopharyngeal brushing samples from NPC and nasal NKTCL patients. Our results showed that the EBV genome among different types of tumors displayed specific methylation patterns. Among the four types of tumors from epithelial origin (NPC, EBVaGC, lung LELC and parotid LELC), the most significant differences were found between EBVaGC and the others. For example, in EBVaGC, all CpG sites within 1,44,189-1,45,136 bp of the EBV genome sequence on gene RPMS1 were hyper-methylated compared to the others. Differently, significant differences of EBV CpG sites, particularly those located on gene BILF2, were observed between NPC and nasal NKTCL patients in nasopharyngeal brushing samples. Further, the methylated level of BILF2 was further detected using qMSP, and a diagnostic model distinguishing NPC and nasal NKTCL was established. The AUC of the model was 0.9801 (95% CI 0.9524-1.0000), with the sensitivity and specificity of 98.81% (95% CI 93.63-99.94%) and 76.92% (95% CI 49.74-91.82%), respectively. CONCLUSIONS: Our study reveals more clues for further understanding the pathogenesis of EBV, and provides a possibility for distinguishing EBV-related tumor by detecting specific EBV CpG sites.


Assuntos
Carcinoma , Linfoma de Células T , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Metilação de DNA , Carcinoma/genética , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Linfoma de Células T/genética
2.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640233

RESUMO

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Assuntos
Influenza Humana , Humanos , Proteínas do Core Viral/genética , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Proteínas de Resistência a Myxovirus
3.
Microbes Infect ; 26(5-6): 105350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723999

RESUMO

The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 = 98.7%, p = 0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.


Assuntos
Animais Selvagens , COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Animais , Animais Selvagens/virologia , Prevalência , Humanos , Fatores de Risco
4.
MedComm (2020) ; 5(9): e673, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161799

RESUMO

Saliva biopsy of nasopharyngeal carcinoma (NPC) has been developed in our latest study, indicating the application of oral sampling in NPC detection. Further exploration of the potential for self-sampling from the oral cavity is necessary. A total of 907 various samples from oral cavity, including saliva (n = 262), oropharyngeal swabs (n = 250), oral swabs (n = 210), and mouthwash (n = 185), were collected. Epstein‒Barr virus (EBV) DNA methylation at the 12,420 bp CpG site in EBV genome from the repeat-copy W promoter (Wp) region and at the 11,029 bp CpG site in the single-copy C promoter (Cp) region were simultaneously detected in these samples. A significant increase in EBV methylation, no matter at Wp or Cp region, was found in all types of samples from NPC patients. However, EBV DNA methylation in saliva and oropharyngeal swab showed a better diagnostic performance in detecting NPC. The combination of these two sample types and two markers could help to improve the detection of NPC. Our study further explored the optimal self-sampling methods and detection target in the detection of NPC and may facilitate the application of EBV DNA methylation detection in a home-based large-scale screening of NPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA