Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 120006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176383

RESUMO

The performance of anaerobic digestion (AD) is susceptible to disturbances in feedstock degradation, intermediates accumulation, and methanogenic archaea activity. To improve the methanogenesis performance of the AD system, Fe-N co-modified biochar was prepared under different pyrolysis temperatures (300,500, and 700 °C). Meanwhile, pristine and Fe-modified biochar were also derived from alternanthera philoxeroides (AP). The aim was to compare the effects of Fe-N co-modification, Fe modification, and pristine biochar on the methanogenic performance and explicit the responding mechanism of the microbial community in anaerobic co-digestion (coAD) of AP and cow manure (CM). The highest cumulative methane production was obtained with the addition of Fe-N-BC500 (260.38 mL/gVS), which was 42.37 % higher than the control, while the acetic acid, propionic acid, and butyric acid concentration of Fe-N-BC were increased by 147.58 %, 44.25 %, and 194.06 % compared with the control, respectively. The co-modified biochar enhanced the abundance of Chloroflexi and Methanosarcina in the AD system. Metabolic pathway analysis revealed that the increased methane production was related to the formation and metabolism of volatile fatty acids and that Fe-N-BC500 enhanced the biosynthesis of coenzyme A and the cell activity of microorganisms, accelerating the degradation of propionic acid and enhancing the hydrogenotrophic methanogenesis pathway. Overall, Fe-N co-modified biochar was proved to be an effective promoter for accelerated methane production during AD.


Assuntos
Carvão Vegetal , Microbiota , Propionatos , Animais , Feminino , Bovinos , Anaerobiose , Esterco , Redes e Vias Metabólicas , Digestão , Metano , Reatores Biológicos
2.
J Environ Manage ; 356: 120573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479289

RESUMO

Anaerobic co-fermentation is a favorable way to convert agricultural waste, such as swine manure (SM) and apple waste (AW), into lactic acid (LA) through microbial action. However, the limited hydrolysis of organic matter remains a main challenge in the anaerobic co-fermentation process. Therefore, this work aims to deeply understand the impact of cellulase (C) and protease (P) ratios on LA production during the anaerobic co-fermentation of SM with AW. Results showed that the combined use of cellulase and protease significantly improved the hydrolysis during the enzymatic pretreatment, thus enhancing the LA production in anaerobic acidification. The highest LA reached 41.02 ± 2.09 g/L within 12 days at the ratio of C/P = 1:3, which was approximately 1.26-fold of that in the control. After a C/P = 1:3 pretreatment, a significant SCOD release of 45.34 ± 2.87 g/L was achieved, which was 1.13 times the amount in the control. Moreover, improved LA production was also attributed to the release of large amounts of soluble carbohydrates and proteins with enzymatic pretreated SM and AW. The bacterial community analysis revealed that the hydrolytic bacteria Romboutsia and Clostridium_sensu_stricto_1 were enriched after enzyme pretreatment, and Lactobacillus was the dominant bacteria for LA production. This study provides an eco-friendly technology to enhance hydrolysis by enzymatic pretreatment and improve LA production during anaerobic fermentation.


Assuntos
Celulases , Malus , Animais , Suínos , Fermentação , Esterco/microbiologia , Ácido Láctico , Bactérias , Peptídeo Hidrolases
3.
J Environ Manage ; 356: 120604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518501

RESUMO

This study aimed to explore the co-application of MnSO4 (Mn) and biochar (BC) in nitrogen conversion during the composting process. A 70-day aerobic composting was conducted using swine slurry, supplemented with different levels of Mn (0, 0.25%, and 0.5%) and 5% BC. The results demonstrated that the treatment with 0.5MnBC had the highest levels of NH4+-N (3.07 g kg-1), TKN (29.90 g kg-1), and NO3--N (1.94 g kg-1) among all treatments. Additionally, the 0.5MnBC treatment demonstrated higher urease, protease, nitrate reductase, and nitrite reductase activities than the other treatments, with the peak values of 18.12, 6.96, 3.57, and 15.14 mg g-1 d-1, respectively. The addition of Mn2+ increased the total organic nitrogen content by 29.59%-47.82%, the acid hydrolyzed ammonia nitrogen (AN) content by 13.84%-57.86% and the amino acid nitrogen (AAN) content by 55.38%-77.83%. The richness of Chloroflexi and Ascomycota was also enhanced by the simultaneous application of BC and Mn. Structural equation modeling analysis showed that Mn2+ can promote the conversion of Hydrolyzed Unknown Nitrogen (HUN) into AAN, and there is a positive association between urease and NH4+-N according to redundancy analysis. Firmicutes, Basidiomycota, and Mortierellomycota showed significant positive correlations with ASN, AN, and NH4+-N, indicating their crucial roles in nitrogen conversion. This study sheds light on promoting nitrogen conversion in swine slurry composting through the co-application of biochar and manganese sulfate.


Assuntos
Compostos de Manganês , Nitrogênio , Solo , Sulfatos , Animais , Suínos , Nitrogênio/metabolismo , Urease , Esterco , Carvão Vegetal
4.
J Environ Manage ; 361: 121231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810463

RESUMO

Insitu stabilization and phytoextraction are considered as two convenient and effective technologies for the remediation of toxic elements (TEs) in soils. However, the effectiveness of these two remediation technologies together on the bioavailability and phytoextraction of TEs in field trials has not been explored yet. Specifically, the remediation potential of fly ash (FA; as stabilizing agent) and ryegrass (as a TE accumulator) intercropped with a target crop for soil polluted with multiple TEs has not been investigated yet, particularly in long-term field trials. Therefore, in this study, a six-month combined remediation field experiment of FA stabilization and/or ryegrass intercropping (IR) was carried out on the farmland soils contaminated with As, Cd, Cr, Cu, Hg, Ni, Pb and Zn where Zanthoxylumbungeanum (ZB) trees as native crops were grown for years. The treatments include soil cultivated alone with ZB untreated- (control) and treated-with FA (FA), produced by burning lignite in Shaanxi Datong power plant, China, soil cultivated with ZB and ryegrass untreated- (IR) and treated-with FA (FA + IR). This was underpinned by a large-scale survey in Daiziying (China), which showed that the topsoils were polluted by Cd, Cu, Hg and Pb, and that Hg and Pb contents in the Zanthoxylumbungeanum fruits exceeded their allowable limits. The TEs contents in the studied FA were lower than their total element contents in the soil. The DTPA-extractable TEs contents of the remediation modes were as follows: FA < FA + IR < IR < control. Notably, TEs contents in the ZB fruits were lowest under the FA + IR treatment, which were decreased by 27.6% for As, 42.3% for Cd, 16.7% for Cr, 30.5% for Cu, 23.1% for Hg, 15.5% for Ni, 33.2% for Pb and 38.1% for Zn compared with the control treatment. Whereas the FA + IR treatment enhanced TEs contents in ryegrass shoots and roots, and the TEs contents in ryegrass shoots were below their regulatory limits for fodder crops. The findings confirmed that the combined remediation strategy, i.e., FA (with low content of TEs) stabilization effect and intercropping of ZB (target crop) and ryegrass (accumulating plant) could provide a prospective approach to produce target plants within safe TEs thresholds with greater economic benefits, while remediating soils polluted with multiple TEs and mitigating the potential ecological and human health risk. Those results are of great applicable concern.


Assuntos
Cinza de Carvão , Lolium , Poluentes do Solo , Solo , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Poluentes do Solo/metabolismo , Solo/química , China , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental , Metais Pesados
5.
Hum Brain Mapp ; 44(9): 3467-3480, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36988434

RESUMO

Alzheimer's disease (AD) is a common neurodegeneration disease associated with substantial disruptions in the brain network. However, most studies investigated static resting-state functional connections, while the alteration of dynamic functional connectivity in AD remains largely unknown. This study used group independent component analysis and the sliding-window method to estimate the subject-specific dynamic connectivity states in 1704 individuals from three data sets. Informative inherent states were identified by the multivariate pattern classification method, and classifiers were built to distinguish ADs from normal controls (NCs) and to classify mild cognitive impairment (MCI) patients with informative inherent states similar to ADs or not. In addition, MCI subgroups with heterogeneous functional states were examined in the context of different cognition decline trajectories. Five informative states were identified by feature selection, mainly involving functional connectivity belonging to the default mode network and working memory network. The classifiers discriminating AD and NC achieved the mean area under the receiver operating characteristic curve of 0.87 with leave-one-site-out cross-validation. Alterations in connectivity strength, fluctuation, and inter-synchronization were found in AD and MCIs. Moreover, individuals with MCI were clustered into two subgroups, which had different degrees of atrophy and different trajectories of cognition decline progression. The present study uncovered the alteration of dynamic functional connectivity in AD and highlighted that the dynamic states could be powerful features to discriminate patients from NCs. Furthermore, it demonstrated that these states help to identify MCIs with faster cognition decline and might contribute to the early prevention of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina
6.
BMC Endocr Disord ; 23(1): 216, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814295

RESUMO

BACKGROUND: The prevalence of diabetes mellitus (DM) is dramatically increasing around the world, and patients are getting younger with changes in living standards and lifestyle. This study summarized and analyzed the clinical characteristics of different types of newly diagnosed diabetes mellitus patients with an onset age between 18 and 40 years to provide clinical evidence for the early diagnosis and treatment of diabetes, reduce short-term and long-term complications and offer scientific and personalized management strategies. METHODS: A total of 655 patients newly diagnosed with early-onset diabetes mellitus in the Department of Endocrinology, the First Medical Center of PLA General Hospital from January 2012 to December 2022 were retrospectively enrolled in this study, with an onset age of 18-40 years. Their clinical data were collected and investigated. All patients were divided into two groups according to whether they presented with diabetic microangiopathy. Similarly, patients with early-onset type-2 diabetes were grouped in accordance with whether they had ketosis at the time of diagnosis. Binary logistic regression analysis was performed to analyze risk factors, and receiver-operating characteristic (ROC) analysis was used to explore the predictive value of significant risk factors. RESULTS: The findings were as follows: (1) Of 655 enrolled patients, 477 (72.8%) were male and 178 (27.1%) were female, with a mean age of onset of was 29.73 years ± 0.24 SD. (2) The prevalence of early-onset diabetes was gradually increasing. Type-2 diabetes was the most common type of early-onset diabetes (491, 75.0%). The ages of onset of early-onset type-1 diabetes, type-2 diabetes and LADA were mainly 18-24 years, 25-40 years and 33-40 years, respectively. (3) Initial clinical manifestations of early-onset diabetes were classic diabetes symptoms (361, 55.1%), followed by elevated blood glucose detected through medical examination (207, 31.6%). (4) Binary logistic regression analysis suggested that high serum uric acid (UA), a high urinary albumin-to-creatinine ratio (UACR) and diabetic peripheral neuropathy (DPN) were risk factors for microangiopathy in early-onset diabetes patients (P < 0.05). The area under the curve (AUC) on ROC analysis of the combination of UA, UACR and DPN was 0.848, 95% CI was 0.818 ~ 0.875, sensitivity was 73.8% and specificity was 85.9%, which had higher predictive value than those of UA, UACR and DPN separately. (5) Weight loss, high glycosylated hemoglobin (HbA1c) and young onset age were risk factors for ketosis in patients with early-onset type-2 diabetes (P < 0.05). CONCLUSION: (1) Men were more likely to have early-onset diabetes than women. (2) Early-onset diabetes patients with high serum uric acid levels, high UACRs and peripheral neuropathy were prone to microangiopathy. Comprehensive evaluation of these risk factors could have higher predictive value in the prediction, diagnosis and treatment of microvascular lesions. (3) Patients with weight loss at onset, high HbA1c and young onset age were more likely to develop ketosis. Attention should be given to the metabolic disorders of these patients.


Assuntos
Diabetes Mellitus Tipo 2 , Cetose , Doenças Vasculares , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estudos Retrospectivos , Ácido Úrico , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Cetose/complicações , Redução de Peso
7.
Environ Res ; 216(Pt 4): 114646, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332671

RESUMO

Microbial-assisted phytoremediation provides a green approach for remediation of metal contaminated soils. However, the impacts of mono and co-applications of lactic acid bacteria (LAB) on soil biochemical properties and phytoavailability of toxic metals in contaminated mining soils have not yet been sufficiently examined. Consequently, here we studied the effects of Lactobacillus plantarum (P), Lactobacillus acidophilus (A), and Lactobacillus rhamnosus (R) applications alone and in combination on soil enzyme activities and bioavailability and uptake of Cd and Zn by mustard (Brassica juncea) in a smelter-contaminated soil under greenhouse conditions. Among the studied bacteria, P was the most tolerant to Cd-and-Zn contamination. As compared to control, R increased the fresh and dry weight of mustard plants by 53.5% and 63.2%, respectively. Co-application of P + A increased the chlorophyll content by 28.6%, as compared to control. Addition of LAB to soil increased the activity of soil urease, alkaline phosphatase and ß-D glucosidase increased by 1.86-fold (P + R), 1.80-fold (R) and 55.16% (P + R), respectively. Application of P + A + R enhanced catalase activity (19.3%) and superoxide dismutase activity (51.2%), while addition of A alone increased peroxidase activity (POD: 15.7%). Addition of P alone and together with A (P + A) enhanced Cd and Zn phytoextraction by mustard shoots up to 51.5% and 52.5%, respectively. We conclude that the single and/or co-application of LAB decreased soil pH, promoted plant growth, antioxidant and enzyme activities, and enhanced the phytoavailability of Cd and Zn in the studied contaminated soil. These findings might be an aid for enhancing the phytoremediation of Cd and Zn using LAB and mustard as a bioenergy crop, which may offer new ideas for field treatment of toxic metals contaminated soils.


Assuntos
Lactobacillales , Poluentes do Solo , Antioxidantes , Biodegradação Ambiental , Bioengenharia , Cádmio/análise , Cádmio/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Mostardeira , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zinco/análise , Zinco/toxicidade
8.
Ecotoxicol Environ Saf ; 249: 114388, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508810

RESUMO

Soil heavy metal pollution is one of the most serious environmental problems in China, especially cadmium (Cd), which has the most extensive contaminated soil coverage. Therefore, more economical and efficient remediation methods and measures are needed to control soil Cd contamination. In this study, different amendments (biochar (B), organic fertilizer (F), lime (L)) and actinomycetes (A) inoculants were applied to Cd contaminated farmland to explore their effects on wheat growth. Compared with Control, all treatments except A treatment were able to significantly increase the underground parts dry mass of wheat, with the highest increase of 57.19 %. The results showed that the B treatment significantly increased the plant height of wheat by 3.45 %. All treatments increased wheat SOD activity and chlorophyll content and reduced the MDA, which contributes to wheat stress resistance under Cd contamination. F, L and AF treatments can significantly reduce the Cd content in wheat above- and underground parts by up to 56.39 %. Soil amendments can modify the physical and chemical properties of the soil, which in turn affects the absorption of Cd by wheat. Moreover, the addition of soil amendments significantly affects the composition and structure of the rhizospheric soil bacterial community at the wheat jointing stage. The application of organic fertilizer increases the richness and diversity of the bacterial community, while lime makes it significantly decreases it. T-test and microbiome co-occurrence networks show that actinomycetes could not only effectively colonize in local soil, but also effectively enhance the complexity and stability of the rhizosphere microbial community. Considering the practical impact of different treatments on wheat, soil microorganisms, economic benefits and restoration of soil Cd contamination, the application of organic fertilizer and actinomycetes in Cd contaminated soil is a more ideal remediation strategy. This conclusion can be further verified by studying larger repair regions and longer consecutive repair cycles to gain insight into the repair mechanism.


Assuntos
Actinobacteria , Cádmio , Recuperação e Remediação Ambiental , Microbiologia do Solo , Poluentes do Solo , Actinobacteria/metabolismo , Cádmio/análise , Cádmio/metabolismo , Carvão Vegetal/química , Fazendas , Fertilizantes , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Triticum/crescimento & desenvolvimento
9.
J Food Sci Technol ; 60(8): 2121-2131, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37273573

RESUMO

Pullulan is a commercially available exopolymer biosynthesized by Aureobasidium pullulans supplemented with nitrogen, carbon and other vital components through submerged and solid-state fermentation. These nutrients are very expensive and it raises the cost for the production of pullulan. Hence, the need of alternative cost-effective raw materials for its production is a prerequisite. Owing to its unique physicochemical features, pullulan has various applications in the food, pharmacological, and biomedical domains. Food industrial wastes generate a considerable number of by-products which accumulates and has a negative influence on the environment. These by-products are made up of proteins, carbohydrates, and other components, can be employed as substrates for the production of pullulan. The present review briefs on the pullulan production using food processing waste and by-products and the elements that impact it. It provides an insight into versatile applications of pullulan in food industries. Various challenges and future prospects in the field of research on pullulan production have been uncovered.

10.
Environ Res ; 211: 113075, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35271831

RESUMO

Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Animais , Antibacterianos/análise , Bactérias/metabolismo , Bovinos , China , Rios , Solo , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
11.
Ecotoxicol Environ Saf ; 246: 114160, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215881

RESUMO

Studies have shown that mulching agricultural fields with plastic residues can influence microbial communities in the environment, but few studies have investigated the differences in the soil microbial communities in distinct areas under mulching with different colored plastic products. Thus, in this study, we explored how different colored polyethylene mulching films (PMFs) might affect soil bacterial communities during enrichment incubation. We found significant differences in the bacterial communities under different colored PMFs after incubation. Treatment with the same colored PMF obtained more similar bacterial community compositions. For instance, at the class level, Gammaproteobacteria and Bacteroidia were most abundant with black PMF, whereas Actinobacteria and Bacteroidia were most abundant with white PMF. The most abundant genera were Acinetobacter and Chryseobacterium with black PMF but Rhodanobacter and Paenarthrobacter with white PMF. Polyethylene- and hydrocarbon-degrading bacteria were the core members detected under both treatments, and the bacterial communities were predicted to have the potential for the biodegradation and metabolism of xenobiotics after enrichment culture according to the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) tool. In addition, the bacterial communities in soil from Xinjiang treated with white PMF and in soil from Yangling treated with black PMF were strongly correlated and stable. Our results suggest that the color of the PMF applied affected the soil bacterial communities, where plastics with the same color may have recruited similar species of microorganisms, although the origins of these microorganisms were not the same.


Assuntos
Polietileno , Solo , Solo/química , Agricultura/métodos , Filogenia , Bactérias/genética , Plásticos , Microbiologia do Solo , China
12.
J Environ Manage ; 317: 115474, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751273

RESUMO

Nitrogen loss during composting is closely related to NH4+-N conversion, and ammonia-oxidizing bacteria (AOB) are important microorganisms that promote NH4+-N conversion. Since the biological activity of conventional AOB agents used for compost inoculation declines rapidly during the thermophilic phase of composting, new compound inoculants should be developed that are active during that phase. In the current study, the effects of inoculating cattle manure compost with newly isolated AOB (5%, v/w) [thermotolerant AOB X-2 strain (T-AOB-2), mesophilic AOB X-4 strain (M-AOB-4), and AOB X-2 combined with AOB X-4 (MT-AOB-2-4)] on the conversion of nitrogen, compost maturity, and the resident microbial community were studied. During 35 days of composting, compared with the control, AOB inoculation reduced NH3 emissions by 29.98-46.94%, accelerated the conversion of NH4+-N to NO2--N, increased seed germination values by 13.00-25.90%, and increased the abundance of the microbial community at the thermophilic phase (16.38-68.81%). Network analysis revealed that Bacillaceae play a crucial role in the composting process, with the correlation coefficients: 0.83 (p < 0.05) with NH3, 0.64 (p < 0.05) with NH4+-N, and 0.81 (p < 0.05) with NO2--N. In addition, inoculation with MT-AOB-2-4 notably increased the total nitrogen content of compost, prolonged the sanitation stage, and promoted compost maturity. Hence, MT-AOB-2-4 may be used to increase the microbial community abundance and improve the efficiency of cattle manure composting.


Assuntos
Betaproteobacteria , Compostagem , Microbiota , Amônia , Animais , Bactérias , Bovinos , Esterco/microbiologia , Nitrogênio , Dióxido de Nitrogênio , Oxirredução , Solo
13.
Water Sci Technol ; 83(2): 257-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504692

RESUMO

This paper presents a study of V and N co-doping TiO2 embedding multi-walled carbon nanotubes (MWCNTs) supported on γ-Al2O3 pellet (V/N-TiO2-MWCNTs/γ-Al2O3) composite photocatalyst induced by pulsed discharge plasma to enhance the removal of acid orange II (AO7) from aqueous solution. The photocatalytic activity of the V/N-TiO2-MWCNTs/γ-Al2O3 composite to AO7 removal induced by the pulsed discharge plasma was evaluated. The results indicate that the V/N-TiO2-MWCNTs/γ-Al2O3 composite possesses enhanced photocatalytic activity that facilitates the removal of AO7 compared with the TiO2-MWCNTs/γ-Al2O3 and TiO2/γ-Al2O3 composites. Almost 100% of AO7 is removed after 10 min under optimal conditions. The V0.10/N0.05-TiO2-MWCNTs/γ-Al2O3 photocatalyst exhibits the best removal effect for AO7. Analysis of the removal mechanism indicates that the enhancement of the removal of AO7 resulting from V and N co-doping causes TiO2 lattice distortion and introduces a new impurity energy level, which not only reduces the band gap of TiO2 but also inhibits the recombination of the ecb-/hvb+ pairs.


Assuntos
Nanotubos de Carbono , Compostos Azo , Catálise , Naftalenos , Plasma , Titânio
14.
Hum Brain Mapp ; 41(12): 3379-3391, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32364666

RESUMO

Alzheimer's disease (AD) is associated with disruptions in brain activity and networks. However, there is substantial inconsistency among studies that have investigated functional brain alterations in AD; such contradictions have hindered efforts to elucidate the core disease mechanisms. In this study, we aim to comprehensively characterize AD-associated functional brain alterations using one of the world's largest resting-state functional MRI (fMRI) biobank for the disorder. The biobank includes fMRI data from six neuroimaging centers, with a total of 252 AD patients, 221 mild cognitive impairment (MCI) patients and 215 healthy comparison individuals. Meta-analytic techniques were used to unveil reliable differences in brain function among the three groups. Relative to the healthy comparison group, AD was associated with significantly reduced functional connectivity and local activity in the default-mode network, basal ganglia and cingulate gyrus, along with increased connectivity or local activity in the prefrontal lobe and hippocampus (p < .05, Bonferroni corrected). Moreover, these functional alterations were significantly correlated with the degree of cognitive impairment (AD and MCI groups) and amyloid-ß burden. Machine learning models were trained to recognize key fMRI features to predict individual diagnostic status and clinical score. Leave-one-site-out cross-validation established that diagnostic status (mean area under the receiver operating characteristic curve: 0.85) and clinical score (mean correlation coefficient between predicted and actual Mini-Mental State Examination scores: 0.56, p < .0001) could be predicted with high accuracy. Collectively, our findings highlight the potential for a reproducible and generalizable functional brain imaging biomarker to aid the early diagnosis of AD and track its progression.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Gânglios da Base , Córtex Cerebral , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Conectoma , Rede de Modo Padrão , Aprendizado de Máquina , Doença de Alzheimer/metabolismo , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/metabolismo , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Humanos , Imageamento por Ressonância Magnética
15.
J Environ Manage ; 256: 109967, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989984

RESUMO

With the rapid development of the economy and population, the improvement of life level, enormous organic wastes have been generated. Black soldier fly larvae (BSFL) treatment is an attractive management method as it provides a strategy for waste treatment while also generate biofertilizers. The aim of this study was to evaluate the BSFL processing residue quality through the physical and chemical parameters. The sewage sludge (T1) and food waste (T2) were employed with BSFL (7:1.2 ration on fresh weight basis) and without BSFL T3 and T4 was marked control and composted for 9 days. The results showed that the BSFL composting reduced the organic matter by 14.51-21.98% and the accumulation of volatile fatty acids by 10.12-28.50%. While BSFL composting greatly increased total kjeldahl nitrogen by 23.15% compared with T4, T1 remained essentially unchanged. The additive of BSFL was significantly increased the total phosphorous and potassium in T2, but T1 remained stable compared with control. These results showed that the BSFL could improve the quality of end product and promote the food waste degradation. The current study indicates that the BSFL management provides an environmentally relevant alternative with very convenience in food waste. Further research should focus on residue sanitation.


Assuntos
Compostagem , Eliminação de Resíduos , Simuliidae , Animais , Alimentos , Larva , Esgotos
16.
J Environ Manage ; 255: 109778, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32063315

RESUMO

Waterlogged soils and sediments contaminated with potentially toxic elements (PTEs) constitute a complicated case of degraded areas; their management requires understanding of the dynamic redox-driven PTE mobilization. Such studies about PTE redox-induced dynamics in fishpond sediments are still scarce, but of great importance concerning environmental and human health risk. We studied the redox potential (EH)-induced impacts on the solubility of As, Co, Cu, Mo, Ni, Se, V, and Zn in the sediments of a fish farm in the Nile Delta, Egypt, using an automated apparatus of biogeochemical microcosm. We assessed the fate of elements as affected by the EH-induced changes in pH, Fe, Mn, SO42-, Cl-, and the dissolved aliphatic (DOC) and aromatic (DAC) organic carbon. Sediment redox ranged from -480 mV to +264 mV. Flooding the sediments caused a significant decrease in pH from 8.2 to 5.7. Dissolved concentrations of As, Co, Ni, Se, and Zn, as well as DOC, Fe, and Mn increased under the reducing acidic conditions. The release of As, Co, Ni, Se, and Zn could be attributed to the decrease of EH and the subsequent decrease of pH, as well as to the increase of DOC, and/or the dissolution of Fe-Mn oxides caused by redox reactions. Dissolved concentrations of Cu, Mo, and V increased under oxic conditions and were significantly positive correlated with EH, pH, DAC, and SO42-. This enhancement might be caused by the EH-dependent increase of pH under oxic conditions (particularly for Mo and V), which also led to DAC increase. Sulfide oxidation and the release of the associated elements may have also had a contribution, particularly in the release of Cu. Therefore, the release dynamics of dissolved Cu, Mo, and V in the sediments were controlled, to a certain extent, by the changes of EH/pH, DAC, and sulfur chemistry. We conclude that the biogeochemical differences in the behaviour of the studied elements under variable redox regimes substantially affected the fishponds via possible enhancement of PTE mobilization. Our work shows that the potential environmental risks related to PTE mobilization and fish food security should be taken into consideration for the management of degraded aquaculture systems and waterlogged soils and sediments.


Assuntos
Poluentes do Solo , Poluentes Químicos da Água , Egito , Monitoramento Ambiental , Pesqueiros , Sedimentos Geológicos , Oxirredução , Solo
17.
J Environ Sci (China) ; 87: 299-309, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791503

RESUMO

The residual effect of tobacco biochar (TB ≥ 500°C) mono and co-application with Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ) on the bio-availability of trace elements TE(s) in alkaline soils has not been deeply studied yet. A pot study that had earlier been investigated TB mono and blended with CH, CB and NZ on the immobilization of Pb, Cu Cd, and Zn by Chinese cabbage. Maize crop in the rotation was selected as test plant to assess the residual impact of amendments on stabilization of Pb, Cu Cd, and Zn in mine polluted (M-P), smelter heavily and low polluted (S-HP and S-LP, respectively) soils. The obtained results showed that stabilization of Pb, Cd, Cu and Zn reached 63.84% with TB + CB, 61.19% with TB + CH, 83.31% with TB + CH and 35.27% with TB + CH for M-P soil, 36.46% with TB + NZ, 38.46% with TB + NZ, 19.40% with TB + CH and 62.43% with TB + CH for S-LP soil, 52.94% TB + NZ, 57.65% with TB + NZ, 52.94% with TB + NZ, and 28.44% with TB + CH for S-LP soil. Conversely, TB + CH and TB alone had mobilized Pb and Zn up to 19.29% and 34.96% in M-P soil. The mobility of Zn reached 8.38% with TB + CB and 66.03% with TB for S-HP and S-LP soils. The uptake and accumulation of Pb, Cd, Cu and Zn in shoot and root were reduced in three polluted soils. Overall, the combination of TB along with CH, CB and NZ has been proven to be effective in Pb, Cd, Cu and Zn polluted mine/smelter soils restoration.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Oligoelementos/química , Poluentes do Solo/análise , Nicotiana
18.
J Biomed Sci ; 26(1): 22, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832663

RESUMO

BACKGROUND: Psychological investigations and functional imaging technology have been used to describe neural correlations of different types of memory with various stimuli. Memory with limited storage capacity and a short retention time can be classified as short-term memory (STM) while long-term memory (LTM) can be life-long without defined capacity. METHODS: To identify brain activation pattern associated with different modes of memory for numerical figures, we detected brain activities from twenty-two healthy subjects when performing three types of memory tasks for numbers, namely STM, LTM and working memory (WM), by using functional magnetic resonance imaging (fMRI) technique. RESULTS: The result revealed variable patterns of activation in different brain regions responding to different types of memory tasks. The activation regions with primary processing and transient maintenance of STM for numerical figures are located in the visual cortex and mainly encoded by visual representations, while LTM was encoded by semantics and mainly recruiting left frontal cortex. We also found that subcortical structures, such as the caudate nucleus and the marginal division of the striatum, plays important roles in working memory. CONCLUSIONS: Activation of different brain regions in these three kinds of memories, indicating that different kinds of memories rely on different neural correlates and mental processes.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Masculino , Adulto Jovem
19.
Ecotoxicol Environ Saf ; 184: 109635, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31520954

RESUMO

Biochar is a stable carbonaceous by-product of pyrolysis and can be used for toxic metals (TMs) retention in polluted soil. Wheat (Triticum aestivum) was grown in three polluted soils collected from Chenzhou (CZ), Tongguan (TG) and Fengxian (FX), China. Wood biochar (WBC) was applied at 0, 0.5, 1.0 and 2.0% to each pot filled with 2 kg polluted soil. The results showed that WBC was efficient to alter soil pH and electrical conductivity (EC). The changes in soil pH and EC had a direct relationship with the immobilization and phytostabilization of TMs in the three soils. The bioavailable TMs (Zn, Pb, Cd, and Cu) were reduced in the soil after WBC amendments due to ion exchange, precipitates of metal-carbonates and metal-phosphates, and chemisorption on WBC surface. The reduction in the bioavailable TMs content also resulted in the diminution in TMs shoot uptake in wheat. Similarly, the TMs uptake in wheat root were also reduced as a result of WBC application. The reduction in bioavailable TMs and the release of essential nutrients and base cations from the WBC also increased the wheat shoot and root dry biomasses production. The application of WBC in polluted soil also improved soil health and the urease and ß-glucosidase enzymes were also enhanced. The results concluded that WBC was efficient to reduce the bioavailability of TMs and shoot and root uptake, improved wheat dry biomasses production and soil enzymatic activities in industrial and smelter/mines polluted soils.


Assuntos
Carvão Vegetal/química , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Triticum/crescimento & desenvolvimento , Madeira/química , Disponibilidade Biológica , Biomassa , China , Metais Pesados/metabolismo , Mineração , Poluentes do Solo/metabolismo , Triticum/metabolismo , Urease/análise , beta-Glucosidase/análise
20.
Ecotoxicol Environ Saf ; 167: 396-403, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366273

RESUMO

Phytoremediation of contaminated soil is an in-situ reclamation technique for removal of potentially toxic metals through hyperaccumulator plants. Potherb mustard (Brassica juncea, Coss.) is less explored for its assisted phytoextraction potential to restore and accelerate potentially toxic metals removal from smelter-contaminated soil. In this study, different levels of ethylene diamine tetraacetic acid (EDTA) alone and combined with citric acid (CA) and oxalic acid (OA) were applied in a greenhouse pot experiment. Chelates added on 25th d and 25/35th d after sowing, enhanced cadmium (Cd) and zinc (Zn) bioavailability in soil due to complexation. As a result, Cd and Zn in shoot and root were significantly amplified by 1.7, 2.15 and 1.93, 2.7 folds than control, respectively. Shoot and root dry weight significantly reduced and ranged between 4.13-9.91 and 0.21-0.77 g pot-1, respectively. The toxicity induced by potentially toxic metals in plant imposed a series of biological responses. Plant antioxidants like Phenylalanine ammomialyase (PAL), polyphenol oxidase (PPO) Catalase (CAT) content increased, except the peroxidase (POD) with the addition of chelating agents. Besides, biological concentration factor (BCF) of Cd and Zn, translocation factor (TF) of Cd were notably elevated (>1.0), while TF of Zn was reduced. Pearson correlation analysis showed a positive relation between DTPA-extractable and shoot concentration of Cd and Zn, whereas it showed negative correlation with plant dry weight. In general, chelate-assisted phytoremediation of smelter contaminated soil proved effective in this study, and followed the order: EDTA > EDTA + CA ≈ EDTA + OA > CK.


Assuntos
Cádmio/metabolismo , Quelantes , Ácido Edético , Mostardeira/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Cádmio/análise , Cádmio/farmacocinética , Cádmio/toxicidade , Catalase/metabolismo , Ácido Cítrico , Biomarcadores Ambientais , Metalurgia , Mostardeira/efeitos dos fármacos , Ácido Oxálico , Peroxidase/metabolismo , Raízes de Plantas/química , Brotos de Planta/química , Solo/química , Poluentes do Solo/análise , Zinco/análise , Zinco/farmacocinética , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA