Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Physiol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492234

RESUMO

MutL homolog 1 (MLH1), a member of the MutL-homolog family, is required for normal recombination in most organisms. However, its role in soybean (Glycine max) remains unclear to date. Here, we characterized the Glycine max female and male sterility 1 (Gmfms1) mutation that reduces pollen grain viability and increases embryo sac abortion in soybean. Map-based cloning revealed that the causal gene of Gmfms1 is Glycine max MutL homolog 1 (GmMLH1), and CRISPR/Cas9 knockout approach further validated that disruption of GmMLH1 confers the female-male sterility phenotype in soybean. Loss of GmMLH1 function disrupted bivalent formation, leading to univalent mis-segregation during meiosis and ultimately to female-male sterility. The Gmmlh1 mutant showed about a 78.16% decrease in meiotic crossover frequency compared to the wild type. The residual chiasmata followed a Poisson distribution, suggesting that interference-sensitive crossover formation was affected in the Gmmlh1 mutant. Furthermore, GmMLH1 could interact with GmMLH3A and GmMLH3B both in vivo and in vitro. Overall, our work demonstrates that GmMLH1 participates in interference-sensitive crossover formation in soybean, and provides additional information about the conserved functions of MLH1 across plant species.

2.
Cancer Cell Int ; 24(1): 31, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218960

RESUMO

BACKGROUND: GPR65 is a pH-sensing G-protein-coupled receptor that acts as a key innate immune checkpoint in the human tumor microenvironment, inhibiting the release of inflammatory factors and inducing significant upregulation of tissue repair genes. However, the expression pattern and function of GPR65 in osteosarcoma (OS) remain unclear. The purpose of this study was to investigate and elucidate the role of GPR65 in the microenvironment, proliferation and migration of OS. METHODS: Retrospective RNA-seq data analysis was conducted in a cohort of 97 patients with OS data in the TAEGET database. In addition, single-cell sequencing data from six surgical specimens of human OS patients was used to analyze the molecular evolution process during OS genesis. Tissues chips and bioinformatics results were used to verify GPR65 expression level in OS. MTT, colony formation, EdU assay, wound healing, transwell assay and F-actin assay were utilized to analyze cell proliferation and invasion of OS cancer cells. RNA-seq was used to explore the potential mechanism of GPR65's role in OS. RESULTS: GPR65 expression was significantly low in OS, and subgroup analysis found that younger OS patients, OS patients in metastatic status, and overall survival and progression free survival OS patients had lower GPR65 expression. From ScRNA-seq data of GSE162454, we found the expression of GPR65 is significantly positively correlated with CD4 + T cells CD8 + T cells and OS related macrophage infiltration. Verification experiment found that silencing the expression of GPR65 in osteosarcoma cells U2OS and HOS could promote the proliferation and invasion process, RNA-seq results showed that the role of GPR65 in OS cells was related to immune system, metabolism and signal transduction. CONCLUSION: The low expression of GPR65 in OS leads to high metastasis rate and poor prognosis in OS patients. The suppression of immune escape and inhibition of proliferation may be a key pathway for GPR65 to participate in the progression of OS. The current study strengthens the role of GPR65 in OS development and provides a potential biomarker for the prognosis of OS patients.

3.
Theor Appl Genet ; 137(4): 93, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570354

RESUMO

KEY MESSAGE: Using the integrated approach in the present study, we identified eleven significant SNPs, seven stable QTLs and 20 candidate genes associated with branch number in soybean. Branch number is a key yield-related quantitative trait that directly affects the number of pods and seeds per soybean plant. In this study, an integrated approach with a genome-wide association study (GWAS) and haplotype and candidate gene analyses was used to determine the detailed genetic basis of branch number across a diverse set of soybean accessions. The GWAS revealed a total of eleven SNPs significantly associated with branch number across three environments using the five GWAS models. Based on the consistency of the SNP detection in multiple GWAS models and environments, seven genomic regions within the physical distance of ± 202.4 kb were delineated as stable QTLs. Of these QTLs, six QTLs were novel, viz., qBN7, qBN13, qBN16, qBN18, qBN19 and qBN20, whereas the remaining one, viz., qBN12, has been previously reported. Moreover, 11 haplotype blocks, viz., Hap4, Hap7, Hap12, Hap13A, Hap13B, Hap16, Hap17, Hap18, Hap19A, Hap19B and Hap20, were identified on nine different chromosomes. Haplotype allele number across the identified haplotype blocks varies from two to five, and different branch number phenotype is regulated by these alleles ranging from the lowest to highest through intermediate branching. Furthermore, 20 genes were identified underlying the genomic region of ± 202.4 kb of the identified SNPs as putative candidates; and six of them showed significant differential expression patterns among the soybean cultivars possessing contrasting branch number, which might be the potential candidates regulating branch number in soybean. The findings of this study can assist the soybean breeding programs for developing cultivars with desirable branch numbers.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Mapeamento Cromossômico , Haplótipos , Glycine max/genética , Melhoramento Vegetal , Fenótipo , Sementes/genética , Polimorfismo de Nucleotídeo Único
4.
Gen Comp Endocrinol ; 352: 114500, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508470

RESUMO

Circular RNAs (circRNAs) are non-coding RNAs with endogenous regulatory functions, including regulating skeletal muscle development. However, its role in the development of skeletal muscle in Japanese flounder (Paralichthys olivaceus) is not clear. Therefore we screened a candidate circpdlim5a, which is derived from the gene pdlim5a, from the skeletal muscle transcriptome of Japanese flounder. We characterized circpdlim5a, which was more stable compared to the linear RNA pdlim5a. Distributional characterization of circpdlim5a showed that circpdlim5a was predominantly distributed in the nucleus and was highly expressed in the skeletal muscle of adult Japanese flounder (24 months). When we further studied the circpdlim5a function, we found that it inhibited the expression of proliferation and differentiation genes according to the over-expression experiment of circpdlim5a in myoblasts. We concluded that circpdlim5a may inhibit the proliferation and differentiation of myoblasts and thereby inhibit skeletal muscle development in Japanese flounder. This experiment provides information for the study of circRNAs by identifying circpdlim5a and exploring its function, and offers clues for molecular breeding from an epigenetic perspective.


Assuntos
Linguado , Animais , Linguado/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Transcriptoma
5.
Genomics ; 115(2): 110594, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863417

RESUMO

Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re­oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re­oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.


Assuntos
Exossomos , AVC Isquêmico , MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Astrócitos/metabolismo , Exossomos/genética , Exossomos/metabolismo , AVC Isquêmico/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo
6.
Plant Biotechnol J ; 21(9): 1812-1826, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293701

RESUMO

Fusarium verticillioides (F. verticillioides) is a widely distributed phytopathogen that incites multiple destructive diseases in maize, posing a grave threat to corn yields and quality worldwide. However, there are few reports of resistance genes to F. verticillioides. Here, we reveal that a combination of two single nucleotide polymorphisms (SNPs) corresponding to ZmWAX2 gene associates with quantitative resistance variations to F. verticillioides in maize through a genome-wide association study. A lack of ZmWAX2 compromises maize resistance to F. verticillioides-caused seed rot, seedling blight and stalk rot by reducing cuticular wax deposition, while the transgenic plants overexpressing ZmWAX2 show significantly increased immunity to F. verticillioides. A natural occurrence of two 7-bp deletions within the promoter increases ZmWAX2 transcription, thus enhancing maize resistance to F. verticillioides. Upon Fusarium stalk rot, ZmWAX2 greatly promotes the yield and grain quality of maize. Our studies demonstrate that ZmWAX2 confers multiple disease resistances caused by F. verticillioides and can serve as an important gene target for the development of F. verticillioides-resistant maize varieties.


Assuntos
Fusarium , Zea mays/genética , Estudo de Associação Genômica Ampla , Resistência à Doença/genética , Variação Genética/genética , Doenças das Plantas/genética
7.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298613

RESUMO

The UNUSUAL FLORAL ORGANS (UFO) gene is an essential regulatory factor of class B genes and plays a vital role in the process of inflorescence primordial and flower primordial development. The role of UFO genes in soybean was investigated to better understand the development of floral organs through gene cloning, expression analysis, and gene knockout. There are two copies of UFO genes in soybean and in situ hybridization, which have demonstrated similar expression patterns of the GmUFO1 and GmUFO2 genes in the flower primordium. The phenotypic observation of GmUFO1 knockout mutant lines (Gmufo1) showed an obvious alteration in the floral organ number and shape and mosaic organ formation. By contrast, GmUFO2 knockout mutant lines (Gmufo2) showed no obvious difference in the floral organs. However, the GmUFO1 and GmUFO2 double knockout lines (Gmufo1ufo2) showed more mosaic organs than the Gmufo1 lines, in addition to the alteration in the organ number and shape. Gene expression analysis also showed differences in the expression of major ABC function genes in the knockout lines. Based on the phenotypic and expression analysis, our results suggest the major role of GmUFO1 in the regulation of flower organ formation in soybeans and that GmUFO2 does not have any direct effect but might have an interaction role with GmUFO1 in the regulation of flower development. In conclusion, the present study identified UFO genes in soybean and improved our understanding of floral development, which could be useful for flower designs in hybrid soybean breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/metabolismo , Mutação , Melhoramento Vegetal , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
8.
J Exp Bot ; 73(19): 6646-6662, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35946571

RESUMO

Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.


Assuntos
Arabidopsis , Fitocromo , Glycine max/genética , Glycine max/metabolismo , Fitocromo/metabolismo , Oxirredutases/metabolismo , Arabidopsis/metabolismo , Fotoperíodo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(6): 655-661, 2021 Nov 30.
Artigo em Zh | MEDLINE | ID: mdl-34862780

RESUMO

This study firstly introduced the mechanism, benefits and applications of irreversible electroporation(IRE) for tumor ablation. In addition, this study also introduced the most advanced IRE systems cleared by FDA or CFDA and IRE research equipment. The clinically licensed IRE systems include the Nanoknife 3.0 of Angiodynamics, the DophiTM N3000's steep pulse therapy system of Sanoway, and compound steep pulse therapy equipment of Reeves Technology IRE research equipment include the BTX and Bio-Rad electroporation devices.


Assuntos
Eletroporação , Neoplasias , Eletricidade , Frequência Cardíaca , Humanos , Neoplasias/terapia
10.
Biol Pharm Bull ; 43(3): 533-539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115512

RESUMO

Renal interstitial fibrosis (RIF) is a common pathological characteristic associated with end-stage renal disease. However, treatment strategies for RIF are still very limited. In this study, we reported that kaempferol, a classic flavonoid, exhibited strong and widely inhibitory effect on the expression of fibrosis related genes in transforming growth factor beta 1 (TGF-ß1) treated NRK-52E cells. Further studies revealed that kaempferol inhibited TGF-ß1 induced epithelial-mesenchymal transition (EMT) process of NRK-52E cells and improved renal function deterioration and RIF in unilateral ureteral obstruction (UUO) rats. After exploring the underlying mechanisms, we found that kaempferol was able to activate the BMP-7-Smad1/5 pathway, rather than the TGF-ß1-Smad2/3 pathway. To further validate these results, DMH1 and BMP-7 knockdown were utilized at the cellular level and the results showed that both methods were able to antagonize the effects of kaempferol on the EMT process of NRK-52E cells induced by TGF-ß1. In UUO rats, inhibition of BMP-7 signaling by DMH1 also reversed the effects of kaempferol on renal function decline and RIF. Taken together, our findings demonstrated that kaempferol could be a good candidate for renal fibrosis treatment.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Quempferóis/farmacologia , Nefropatias/metabolismo , Proteínas Smad Reguladas por Receptor/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Células Epiteliais , Fibrose , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
11.
J Cell Biochem ; 120(1): 756-767, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145802

RESUMO

AZD9291, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is highly selective against EGFR T790M-mutant non-small cell lung cancer (NSCLC). On investigating the growth inhibitory effects of AZD9291 on NSCLC and the underlying mechanism, we found that AZD9291 can trigger autophagy-mediated cell death in both A549 and H1975 cells by increasing the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3) and decreasing the expression of p62. In the presence of the autophagy inhibitor chloroquine, the AZD9291-induced increase in LC3 level was further augmented. AZD9291 decreased the levels of phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), and phosphorylated Akt. AZD9291-induced cell death was enhanced by Akt knockdown, and the levels of both EGFR and phosphorylated EGFR were decreased by AZD9291. AZD9291 was also found to significantly suppress the tumor growth in H1975 xenograft nude mice. Thus, AZD9291 was found to induce autophagy, decrease in EGFR levels, and show a strong inhibitory effect on NSCLC both in vitro and in vivo. Furthermore, the PI3K/Akt signaling pathway was found to play a critical role in AZD9291-induced cell death.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/metabolismo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Bioenerg Biomembr ; 49(3): 265-272, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28547157

RESUMO

Shikonin, a natural small agent, has shown inhibitory effect in many kinds of cells, which increases intracellular reactive oxygen species (ROS) level and causes mitochondrial injury. In this study, shikonin showed good inhibitory effect on nasopharyngeal carcinoma CNE-2Z cells in vivo and vitro. The results presented here revealed that ROS levels increased markly after shikonin treated. The electron microscopy displays the change in ultrastructure of CNE-2Z cells after treatment for shikonin, which indicated that shikonin induced necroptosis. Shikonin-induced cell death was inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the activity was unaffected by the caspase inhibitor z-VAD-fmk. Furthermore, we have demonstrated that the activation of receptor-interacting kinase (RIP) led to necroptosis. Meanwhile, shikonin also significantly inhibited tumor growth in a CNE-2Z xenograft mouse model. Taken together, shikonin induced CNE-2Z cells death by producing ROS as a necroptosis inducer. It could serve as a new therapeutic agent for treating CNE-2Z cells.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Naftoquinonas/farmacologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo , Necrose
13.
Anticancer Drugs ; 28(8): 831-840, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28816773

RESUMO

3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/farmacologia , Piruvatos/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Feminino , Fluoruracila/administração & dosagem , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Piruvatos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(9): 898-904, 2016 Sep 28.
Artigo em Zh | MEDLINE | ID: mdl-27640787

RESUMO

OBJECTIVE: To investigate the effects of LCL161, a Smac mimetic, on the proliferation and apoptosis in hepatocellular carcinoma cells and the underlying mechanisms. 
 METHODS: The effect of LCL161 on the cell viability of HepG2 and SMMC7721 cells was measured by MTT assay. The effect of LCL161 at lower concentrations on the proliferation in hepatocellular carcinoma (HCC) cells was detected by colony formation assay. Apoptosis was assessed by flow cytometry with PI staining. The mitochondrial membrane potential was measured by JC-1 staining. The expression of PARP, p-Akt, cIAP1 and XIAP protein was analyzed by Western blot.
 RESULTS: LCL161 displayed notable antiproliferative activity on HCC cells at the concentrations of 1-16 µmol/L (P<0.01), with IC50 values of 4.3 and 4.9 µmol/L for HepG2 and SMMC7721 cells, respectively, after treatment for 48 h. LCL161 at lower concentrations obviously inhibited the colony formation of HCC cells. LCL161 induced significant apoptosis in HCC cells (P<0.01), and resulted in the apoptotic rate at (1.5±0.8)% or (1.8±0.6)% , (15.2±2.8)% or (12.2±2.4)%, (28.7±3.0)% or (22.4±2.7)%, (34.6±2.3)% or (30.2±2.4)% for HepG2 cells or SMMC7721 cells at the concentration of 0, 2, 4 or 8 µmol/L, respectively. The result of JC-1 staining indicated that the mitochondrial membrane potential of HCC cells was reduced by LCL161. In addition, LCL161 promoted the cleavage of PARP, down-regulated the protein expression of p-Akt, and degraded cIAP1.
 CONCLUSION: LCL161 possesses significant anti-proliferative activity and pro-apoptotic action in HepG2 and SMMC7721 cells, which might be correlated with reduction in mitochondrial membrane potential, down-regulation of p-Akt and degradation of cIAP1.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Tiazóis/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Células Hep G2 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Hepáticas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
15.
J Biomol Struct Dyn ; : 1-12, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288949

RESUMO

Glutathione S-transferase P1 (GSTP1) has gradually become a promising target for cancer prevention and treatment. However, subtle variations in GSTP1 can lead to the occurrence of single nucleotide polymorphisms (SNPs). The correlation between specific genotypes of GSTP1 and the clinical outcome of the disease has been extensively investigated, demonstrating a significant area of research in this field. However, their impact on the responses to GSTP1 inhibitor treatment remains to be elucidated. Among the various SNPs of GSTP1, I105V polymorphisms is the most widely studied. In this study, a silico model of GSTP1 I105V polymorphism was successfully established to predict the changes of binding model and binding affinity between GSTP1 I105(WT) or GSTP1 V105 and ethacrynic acid via molecular docking and molecular dynamics, and ultimately further evaluated for its anticancer effects. The result demonstrated that the binding capacity of ethacrynic acid decreases with the I105V mutation of GSTP1, indicating the changes in its anticancer activities. Cancer cells expressing GSTP1 V105 may exhibit greater tolerance to ethacrynic acid-induced toxicity compared to other genotypes. In summary, this study provides the first evidence that the GSTP1 I105V polymorphism may impact cancer cell sensitivity to its inhibitor through theoretical prediction. Furthermore, a comprehensive understanding of the correlation between GSTP1 I105V polymorphisms and responses to GSTP1 inhibitor treatment would offer valuable insights for future drug development targeting GSTP1 in cancer-related diseases.Communicated by Ramaswamy H. Sarma.

16.
Mar Pollut Bull ; 199: 115951, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150976

RESUMO

Due to the degradation-resistant and strong toxicity, heavy metals pose a serious threat to the safety of water environment and aquatic ecology. Rapid acquisition and prediction of heavy metal concentrations are of paramount importance for water resource management and environmental preservation. In this study, heavy metal concentrations (Cr, Ni, Cu, Pb, Zn, Cd) and physicochemical parameters of water quality including Temperature (Temp), pH, Oxygen redox potential (ORP), Dissolved oxygen (DO), Electrical conductivity (EC), Electrical resistivity (RES), Total dissolved solids (TDS), Salinity (SAL), Cyanobacteria (BGA-PE), and turbidity (NTU) were measured at seven stations in the Yangtze river estuary. Principal Component Analysis (PCA) and Spearman correlation analysis were employed to analyze the main factors and sources of heavy metals. Results of PCA revealed that the main sources of Cr, Ni, Zn, and Cd were steel industry wastewater, domestic and industrial sewage, whereas shipping and vessel emissions were typically considered sources of Pb and Cu. Spearman correlation analysis identified Temp, pH, ORP, EC, RES, TDS, and SAL as the key physicochemical parameters of water quality, exhibiting the strongest correlation with heavy metal concentrations in sediment and water samples. Based on these results, multiple linear regression as well as non-linear models (SVM and RF) were constructed for predicting heavy metal concentrations. The results showed that the results of the nonlinear model were more suitable for predicting the concentrations of most heavy metals than the linear model, with average R values of the SVM test set and RF test set being 0.83 and 0.90. The RF model showed better applicability for simulating the concentration of heavy metals along the Yangtze river estuary. It was demonstrated that non-linear research methods provided efficient and accurate predictions of heavy metal concentrations in a simple and rapid manner, thereby offering decision-making support for watershed managers.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Qualidade da Água , Estuários , Monitoramento Ambiental/métodos , Rios , Cádmio/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Oxigênio/análise , China , Sedimentos Geológicos , Medição de Risco
17.
Environ Sci Pollut Res Int ; 31(22): 32091-32110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648002

RESUMO

Pollution from heavy metals in estuaries poses potential risks to the aquatic environment and public health. The complexity of the estuarine water environment limits the accurate understanding of its pollution prediction. Field observations were conducted at seven sampling sites along the Yangtze River Estuary (YRE) during summer, autumn, and winter 2021 to analyze the concentrations of seven heavy metals (As, Cd, Cr, Pb, Cu, Ni, Zn) in water and surface sediments. The order of heavy metal concentrations in water samples from highest to lowest was Zn > As > Cu > Ni > Cr > Pb > Cd, while that in surface sediments samples was Zn > Cr > As > Ni > Pb > Cu > Cd. Human health risk assessment of the heavy metals in water samples indicated a chronic and carcinogenic risk associated with As. The risks of heavy metals in surface sediments were evaluated using the geo-accumulation index (Igeo) and potential ecological risk index (RI). Among the seven heavy metals, As and Cd were highly polluted, with Cd being the main contributor to potential ecological risks. Principal component analysis (PCA) was employed to identify the sources of the different heavy metals, revealing that As originated primarily from anthropogenic emissions, while Cd was primarily from atmospheric deposition. To further analyze the influence of water quality indicators on heavy metal pollution, an artificial neural network (ANN) model was utilized. A modified model was proposed, incorporating biochemical parameters to predict the level of heavy metal pollution, achieving an accuracy of 95.1%. This accuracy was 22.5% higher than that of the traditional model and particularly effective in predicting the maximum 20% of values. Results in this paper highlight the pollution of As and Cd along the YRE, and the proposed model provides valuable information for estimating heavy metal pollution in estuarine water environments, facilitating pollution prevention efforts.


Assuntos
Monitoramento Ambiental , Estuários , Metais Pesados , Redes Neurais de Computação , Rios , Poluentes Químicos da Água , Metais Pesados/análise , China , Medição de Risco , Poluentes Químicos da Água/análise , Rios/química , Sedimentos Geológicos/química
18.
Materials (Basel) ; 16(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895794

RESUMO

Titanium alloy is a widely used metal material, which can be applied in fields such as healthcare, petroleum exploration, aerospace, etc. In this paper, a new method for polishing the titanium alloy by a pulsating air jet is proposed. Compared with traditional abrasive jet polishing, this method has the advantages of simple structure, low nozzle wear, and high polishing flexibility. The working principle and material removal mechanism of the pulsating air jet polishing (PAJP) are introduced. Combined with orthogonal experiments, range analysis and variance analysis were used to find out the influence degree of each process parameter on the PAJP of titanium alloy, and the optimal level of each parameter was found. Through the experiments, a prediction model of surface roughness was established by regression analysis, and the predicted value was compared with the measured value. The maximum relative error of the prediction model was 10.3%, and the minimum relative error was 1.1%. The average relative error was 6.2%.

19.
Front Public Health ; 11: 1289512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274532

RESUMO

Objective: This study aims to identify factors influencing university students' participation in time banking volunteer services for older adults and provides evidence to promote the involvement. Methods: Conducted in November 2022, we utilized a convenience sampling method to recruit students from the School of Aging Service and Management at Nanjing University of Chinese Medicine, China. Data was collected through an online questionnaire focusing on various aspects related to time banking volunteer services for older adults. Factor analysis was employed to extract variables, and logistic regression was applied to identify key determinants. Results: A significant majority (82.67%) of participants expressed willingness to engage in volunteer services for older adults. Factor analysis uncovered six influential factors explaining 62.55% of the variance. Logistic regression highlighted four key determinants of students' willingness: value judgment (OR = 4.392, CI = 2.897-6.658), social support (OR = 1.262, CI = 0.938-1.975), social influence (OR = 1.777, CI = 1.598-3.799), and socioeconomic conditions (OR = 1.174, CI = 1.891-3.046). Conclusion: To foster sustainability and continuous time banking among university students majoring in aging service and management, a multifaceted support involving governmental, social, and university is recommended.


Assuntos
Estudantes , Voluntários , Humanos , Idoso , Universidades , China , Inquéritos e Questionários
20.
Br J Pharmacol ; 180(12): 1562-1581, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36581319

RESUMO

BACKGROUND AND PURPOSE: Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but growing evidence also reveals that SQLE is abnormally expressed in some types of malignant tumours, even though the underlying mechanism remains poorly understood. EXPERIMENTAL APPROACH: Bioinformatics analysis and RNA sequencing were applied to detect differentially expressed genes in clinical hepatocellular carcinoma (HCC). MTT, colony formation, AnnexinV-FITC/PI, EdU, wound healing, transwell, western blot, qRT-PCR, IHC, F-actin, RNA-sequencing, dual-luciferase reporters, and H&E staining were used to investigate the pharmacological effects and possible mechanisms of SQLE. KEY RESULTS: SQLE expression was specifically elevated in HCC, correlating with poor clinical outcomes. SQLE significantly promoted HCC growth, epithelial-mesenchymal transition, and metastasis both in vitro and in vivo. RNA sequencing and functional experiments revealed that the protumourigenic effect of SQLE on HCC was closely related to the activation of TGF-ß/SMAD signalling, but the stimulatory effect of SQLE on TGF-ß/SMAD signalling and HCC development is critically dependent on STRAP. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-ß/SMAD signalling, SQLE even transcriptionally increased STRAP gene expression mediated by AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumour development. CONCLUSIONS AND IMPLICATIONS: Taken together, SQLE serves as a novel oncogene in HCC development by activating TGF-ß/SMAD signalling. Targeting SQLE could be useful in drug development and therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Linhagem Celular , Proliferação de Células/genética , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA