Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37948670

RESUMO

OBJECTIVE: To compare the effects of peritoneal dialysis and hemodialysis on spontaneous brain activity in patients with end-stage renal disease. METHODS: A total of 52 dialysis patients with end-stage renal disease, including 25 patients with chronic kidney disease undergoing hemodialysis (HD-CKD) and 27 patients with chronic kidney disease undergoing peritoneal dialysis (PD-CKD), and 49 healthy controls (normal control) were included. All participants underwent neuropsychological testing (Mini-Mental State Examination and Montreal cognitive assessment) and resting-state functional magnetic resonance imaging. Fractional amplitude of low frequency fluctuations and Regional Homogeneity algorithms were employed to evaluate spontaneous brain activity. Statistical analysis was performed to discern differences between the groups. RESULTS: When compared with the normal control group, the PD-CKD group exhibited significant alterations in fractional amplitude of low frequency fluctuations in various cerebellum regions and other brain areas, while the HD-CKD group showed decreased fractional amplitude of low frequency fluctuations in the bilateral pericalcarine cortex. The Regional Homogeneity values in the PD-CKD group were notably different than those in the normal control group, particularly in regions such as the bilateral caudate nucleus and the right putamen. CONCLUSION: Both peritoneal dialysis and hemodialysis modalities impact brain activity, but manifest differently in end-stage renal disease patients. Understanding these differences is crucial for optimizing patient care.


Assuntos
Falência Renal Crônica , Diálise Peritoneal , Insuficiência Renal Crônica , Humanos , Imageamento por Ressonância Magnética/métodos , Diálise Renal , Encéfalo , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/patologia , Falência Renal Crônica/terapia , Falência Renal Crônica/patologia
2.
J Infect Dis ; 229(1): 117-121, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565805

RESUMO

Using a prospective, observational cohort study during the post-"dynamic COVID-zero" wave in China, we estimated short-term relative effectiveness against Omicron BA.5 infection of inhaled aerosolized adenovirus type 5-vectored ancestral strain coronavirus disease 2019 (COVID-19) vaccine as a second booster dose approximately 1 year after homologous boosted primary series of inactivated COVID-19 vaccine compared with no second booster. Participants reported nucleic acid or antigen test results weekly until they tested positive or completed predesignated follow-up. After excluding participants infected <14 days after study entry, relative effectiveness among the 6576 participants was 61% in 18- to 59-year-olds and 38% in ≥60-year-olds and was sustained for 12 weeks.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Estudos Prospectivos , Eficácia de Vacinas , China/epidemiologia , Adenoviridae/genética
3.
Anal Chem ; 96(5): 1834-1842, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266381

RESUMO

Light-absorbing organic aerosols, referred to as brown carbon (BrC), play a vital role in the global climate and air quality. Due to the complexity of BrC chromophores, the identified absorbing substances in the ambient atmosphere are very limited. However, without comprehensive knowledge of the complex absorbing compounds in BrC, our understanding of its sources, formation, and evolution mechanisms remains superficial, leading to great uncertainty in climatic and atmospheric models. To address this gap, we developed a constrained non-negative matrix factorization (NMF) model to resolve the individual ultraviolet-visible spectrum for each substance in dissolved organic aerosols, with the power of ultrahigh-performance liquid chromatography-diode array detector-ultrahigh-resolution mass spectrometry (UHPLC-DAD-UHRMS). The resolved spectra were validated by selected standard substances and validation samples. Approximately 40,000 light-absorbing substances were recognized at the MS1 level. It turns out that BrC is composed of a vast number of substances rather than a few prominent chromophores in the urban atmosphere. Previous understanding of the absorbing feature of BrC based on a few identified compounds could be biased. Weak-absorbing substances missed previously play an important role in BrC absorption when they are integrated due to their overwhelming number. This model brings the property exploration of complex dissolved organic mixtures to a molecular level, laying a foundation for identifying potentially significant compositions and obtaining a comprehensive chemical picture.

4.
Mod Pathol ; 37(4): 100451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369190

RESUMO

MET amplification (METamp) represents a promising therapeutic target in non-small cell lung cancer, but no consensus has been established to identify METamp-dependent tumors that could potentially benefit from MET inhibitors. In this study, an analysis of MET amplification/overexpression status was performed in a retrospectively recruited cohort comprising 231 patients with non-small cell lung cancer from Shanghai Chest Hospital (SCH cohort) using 3 methods: fluorescence in situ hybridization (FISH), hybrid capture-based next-generation sequencing, and immunohistochemistry for c-MET and phospho-MET. The SCH cohort included 130 cases known to be METamp positive by FISH and 101 negative controls. The clinical relevance of these approaches in predicting the efficacy of MET inhibitors was evaluated. Additionally, next-generation sequencing data from another 2 cohorts including 22,010 lung cancer cases were utilized to examine the biological characteristics of different METamp subtypes. Of the 231 cases, 145 showed MET amplification/overexpression using at least 1 method, whereas only half of them could be identified by all 3 methods. METamp can occur as focal amplification or polysomy. Our study revealed that the inconsistency between next-generation sequencing and FISH primarily occurred in the polysomy subtype. Further investigations indicated that compared with polysomy, focal amplification correlated with fewer co-occurring driver mutations, higher protein expressions of c-MET and phospho-MET, and higher incidence in acquired resistance than in de novo setting. Moreover, patients with focal amplification presented a more robust response to MET inhibitors compared with those with polysomy. Notably, a strong correlation was observed between focal amplification and programmed cell death ligand-1 expression, indicating potential therapeutic implications with combined MET inhibitor and immunotherapy for patients with both alterations. Our findings provide insights into the molecular complexity and clinical relevance of METamp in lung cancer, highlighting the role of MET focal amplification as an oncogenic driver and its feasibility as a primary biomarker to further investigate the clinical activity of MET inhibitors in future studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Retrospectivos , Hibridização in Situ Fluorescente , Mutação , China , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Aberrações Cromossômicas , Amplificação de Genes
5.
J Magn Reson Imaging ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488213

RESUMO

BACKGROUND: Cognitive impairment is increasingly recognized as an important comorbidity and complication of type 2 diabetes (T2D), affecting patients' quality of life and diabetes management. Dynamic brain activity indicators can reflect changes in key neural activity patterns of cognition and behavior. PURPOSE: To investigate dynamic functional connectivity (DFC) changes and spontaneous brain activity based on resting-state functional magnetic resonance imaging (rs-fMRI) in patients with T2D, exploring their correlations with clinical features. STUDY TYPE: Retrospective. SUBJECTS: Forty-five healthy controls (HCs) (22 males and 23 females) and 102 patients with T2D (57 males and 45 females). FIELD STRENGTH/SEQUENCE: 3.0 T/T1-weighted imaging and rs-fMRI with gradient-echo planar imaging sequence. ASSESSMENT: Functional networks were created using independent component analysis. DFC states were determined using sliding window approach and k-means clustering. Spontaneous brain activity was assessed using dynamic regional homogeneity (dReHo) variability. STATISTICAL TESTS: One-way analysis of variance and post hoc analysis were used to compare the essential information including demographics, clinical data, and features of DFC and dReHo among groups. Diagnostic performance was assessed using receiver operating characteristic (ROC) curve. P-values <0.05 were taken to indicate statistical significance. RESULTS: T2D group had significantly decreased mean dwell time and fractional windows in state 4 compared to HC. T2D with mild cognitive impairment showed significantly increased dReHo variability in left superior occipital gyrus compared to T2D with normal cognition. Mean dwell time and number of fractional windows of state 4 both showed significant positive correlations with the Montreal cognitive assessment scores (r = 0.309; r = 0.308, respectively) and the coefficient of variation of dReHo was significantly positively correlated with high-density lipoprotein cholesterol (r = 0.266). The integrated index had an area under the curve of 0.693 (95% confidence interval = 0.592-0.794). DATA CONCLUSION: Differences in DFC and dynamic characteristic of spontaneous brain activity associated with T2D-related functional impairment may serve as indicators for predicting symptom progression and assessing cognitive dysfunction. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

6.
Gynecol Oncol ; 182: 82-90, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262243

RESUMO

OBJECTIVE: The genome-wide profiling of 5-hydroxymethylcytosines (5hmC) on circulating cell-free DNA (cfDNA) has revealed promising biomarkers for various diseases. The purpose of this study was to investigate 5hmC signals in serum cfDNA and identify novel predictive biomarkers for the development of chemoresistance in high-grade serous ovarian cancer (HGSOC). We hypothesized that 5hmC profiles in cfDNA reflect the development of chemoresistance and elucidate pathways that may drive chemoresistance in HGSOC. Moreover, we sought to identify predictors that would better stratify outcomes for women with intermediate-sensitive HGSOC. METHODS: Women diagnosed with HGSOC and known platinum sensitivity status were selected for this study. Nano-hmC-Seal was performed on cfDNA isolated from archived serum samples, and differential 5hmC features were identified using DESeq2 to establish a model predictive of chemoresistance. RESULTS: A multivariate model consisting of three features (preoperative CA-125, largest residual implant after surgery, 5hmC level of OSGEPL), stratified samples from intermediate sensitive, chemo-naive women diagnosed with HGSOC into chemotherapy-resistant- and sensitive-like strata with a significant difference in overall survival (OS). Independent analysis of The Cancer Genome Atlas data further confirmed that high OSGEPL1 expression is a favorable prognostic factor for HGSOC. CONCLUSIONS: We have developed a novel multivariate model based on clinico-pathologic data and a cfDNA-derived 5hmC modified gene, OSGEPL1, that predicted response to platinum-based chemotherapy in intermediate-sensitive HGSOC. Our multivariate model applies to chemo-naïve samples regardless if the patint was treated with adjuvant or neoadjuvant chemotherapy. These results merit further investigation of the predictive capability of our model in larger cohorts.


Assuntos
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores
7.
Diabetes Obes Metab ; 26(2): 650-662, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961040

RESUMO

AIMS: To investigate the neural static and dynamic intrinsic activity of intra-/inter-network topology among patients with type 2 diabetes (T2D) with non-alcoholic fatty liver disease (NAFLD) and those without NAFLD (T2NAFLD group and T2noNAFLD group, respectively) and to assess the relationship with metabolism. METHODS: Fifty-six patients with T2NAFLD, 78 with T2noNAFLD, and 55 healthy controls (HCs) were recruited to the study. Participants had normal cognition and underwent functional magnetic resonance imaging scans, clinical measurements, and global cognition evaluation. Independent component analysis was used to identify frequency spectrum parameters, static functional network connectivity, and temporal properties of dynamic functional network connectivity (P < 0.05, false discovery rate-corrected). Statistical analysis involved one-way analysis of covariance with post hoc, partial correlation and canonical correlation analyses. RESULTS: Our findings showed that: (i) T2NAFLD patients had more disordered glucose and lipid metabolism, had more severe insulin resistance, and were more obese than T2noNAFLD patients; (ii) T2D patients exhibited disrupted brain function, as evidenced by alterations in intra-/inter-network topology, even without clinically measurable cognitive impairment; (iii) T2NAFLD patients had more significant reductions in the frequency spectrum parameters of cognitive executive and visual networks than those with T2noNAFLD; and (iv) altered brain function in T2D patients was correlated with postprandial glucose, high-density lipoprotein cholesterol, and waist-hip ratio. CONCLUSION: This study may provide novel insights into neuroimaging correlates for underlying pathophysiological processes inducing brain damage in T2NAFLD. Thus, controlling blood glucose levels, lipid levels and abdominal obesity may reduce brain damage risk in such patients.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Glucose
8.
Diabetes Obes Metab ; 26(3): 840-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994378

RESUMO

AIMS: To characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction, and further investigate the associations between the most significant indicator and cognitive function, along with related cerebral alterations. MATERIALS AND METHODS: We performed a cross-sectional study in 449 subjects with type 2 diabetes who completed continuous glucose monitoring and cognitive assessments. Of these, 139 underwent functional magnetic resonance imaging to evaluate cerebral structure and olfactory neural circuit alterations. Relative weight and Sobol's sensitivity analyses were employed to characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction. RESULTS: Complexity of glucose time series index (CGI) was found to have a more pronounced association with mild cognitive impairment (MCI) compared to glycated haemoglobin, time in range, and standard deviation. The proportion and multivariable-adjusted odds ratios (ORs) for MCI increased with descending CGI tertile (Tertile 1: reference group [≥4.0]; Tertile 2 [3.6-4.0] OR 1.23, 95% confidence interval [CI] 0.68-2.24; Tertile 3 [<3.6] OR 2.27, 95% CI 1.29-4.00). Decreased CGI was associated with cognitive decline in executive function and attention. Furthermore, individuals with decreased CGI displayed reduced olfactory activation in the left orbitofrontal cortex (OFC) and disrupted functional connectivity between the left OFC and right posterior cingulate gyrus. Mediation analysis demonstrated that the left OFC activation partially mediated the associations between CGI and executive function. CONCLUSION: Decreased glucose complexity closely relates to cognitive dysfunction and olfactory brain activation abnormalities in diabetes.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Glucose , Fatores de Tempo , Estudos Transversais , Automonitorização da Glicemia , Glicemia , Cognição , Disfunção Cognitiva/etiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia
9.
Genet Sel Evol ; 56(1): 37, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741064

RESUMO

Anas, is a genus of dabbling ducks and encompasses a considerable number of species, among which some are the progenitors of domestic ducks. However, the taxonomic position of the Anas genus remains uncertain because several of its species, initially categorized as Anas based on morphological characteristics, were subsequently reclassified and grouped with the South American genus Tachyeres, primarily based on analysis of their mitochondrial gene sequences. Here, we constructed a phylogenetic tree using nine of our recently assembled Anas genomes, two Tachyeres genomes, and one Cairina genome that are publicly available. The results showed that the Northern shoveler (Anas clypeata) and Baikal teal (Anas formosa) clustered with the other Anas species at the whole-genome level rather than with the Steamer ducks (genus Tachyeres). Therefore, we propose to restore the original classification of the Anas genus, which includes the Northern shoveler and Baikal teal species, 47 species in total. Moreover, our study unveiled extensive incomplete lineage sorting and an ancient introgression event from Tachyeres to Anas, which has led to notable phylogenetic incongruence within the Anas genome. This ancient introgression event not only supports the theory that Anas originated in South America but also that it played a significant role in shaping the evolutionary trajectory of Anas, including the domestic duck.


Assuntos
Patos , Filogenia , Animais , Patos/genética , Patos/classificação , Sequenciamento Completo do Genoma/métodos , Genoma
10.
Environ Res ; 252(Pt 2): 118937, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621627

RESUMO

Hydroxyapatite, a calcium phosphate biomass material known for its excellent biocompatibility, holds promising applications in water, soil, and air treatment. Sodium alginate/hydroxyapatite/chitosan (SA-HA-CS) microspheres were synthesized by cross-linking sodium alginate with calcium chloride. These microspheres were carriers for immobilizing extracellular crude enzymes from white rot fungi through adsorption, facilitating the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) in water and soil. At 50 °C, the immobilized enzyme retained 87.2% of its maximum activity, while the free enzyme activity dropped to 68.86%. Furthermore, the immobilized enzyme maintained 68.09% of its maximum activity at pH 7, surpassing the 51.16% observed for the free enzyme. Under optimal conditions (pH 5, 24 h), the immobilized enzymes demonstrated a remarkable 94.7% removal rate for 160 mg/L 2,4,6-TCP, outperforming the 62.1% achieved by free crude enzymes. The degradation of 2,4,6-TCP by immobilized and free enzymes adhered to quasi-first-order degradation kinetics. Based on LC-MS, the plausible biodegradation mechanism and reaction pathway of 2,4,6-TCP were proposed, with the primary degradation product identified as 1,2,4-trihydroxybenzene. The immobilized enzyme effectively removed 72.9% of 2,4,6-TCP from the soil within 24 h. The degradation efficiency of the immobilized enzyme varied among different soil types, exhibiting a negative correlation with soil organic matter content. These findings offer valuable insights for advancing the application of immobilized extracellular crude enzymes in 2,4,6-TCP remediation.


Assuntos
Alginatos , Biodegradação Ambiental , Quitosana , Clorofenóis , Durapatita , Enzimas Imobilizadas , Microesferas , Clorofenóis/metabolismo , Alginatos/química , Quitosana/química , Durapatita/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
11.
Dig Dis Sci ; 69(1): 66-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968554

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel disease (IBD) is currently gaining an increasing global interest. Intestinal epithelial barrier dysfunction is crucial toward developing IBD; however, the underlying mechanisms are not yet elucidated. This study is aimed at elucidating the function of CRL4DCAF2, an E3 ligase, toward mediating intestinal homeostasis. METHODS: Colon samples were collected from patients with IBD and healthy individuals to examine the expression of CRL4DCAF2. CRL4DCAF2 conditional knockdown in mouse intestinal epithelial cells (IECs) (DCAF2EKD) were constructed. DCAF2EKD and their littermate control (DCAF2EWT) were treated with dextran sodium sulfate (DSS) to induce acute colitis. Transcriptome analysis was performed on inflamed colon samples obtained from the mice. Cell cycle regulators were evaluated using real-time polymerase chain reaction (PCR), while tight junction and apoptosis proteins were examined via immunofluorescence and western blot. RESULTS: CRL4DCAF2 expression was significantly decreased in the inflamed IBD epithelium, and low expression of CRL4DCAF2 associated with high recurrence risk. Mice with DCAF2 specific knockout in IECs suffer from embryonic death. Multiple genes involved in cell proliferation, immune response, and gap junction were differentially expressed in inflamed colon from DCAF2EKD compared with DCAF2EWT. Furthermore, conditional downregulation of CRL4DCAF2 in the intestinal epithelium induced primarily epithelial damage, increased intestinal permeability, and diminished tight junction protein expression. In vivo and in vitro cell transfection experiments revealed that CRL4DCAF2 enhanced cell proliferation by promoting p21 ubiquitination and degradation, thereby inhibiting G2/M cell cycle. In addition, CRL4DCAF2 can also inhibit IEC apoptosis and promote cell autophagy. CONCLUSIONS: CRL4DCAF2 downregulation in IECs promotes intestinal barrier dysfunction and inhibits IEC proliferation, thus making it more susceptible to inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Proliferação de Células , Homeostase , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
12.
Postgrad Med J ; 100(1185): 516-518, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484779

RESUMO

Sexual harassment (SH) is a particularly harmful type of harassment that can inflict lasting psychological harm on victims. Within the healthcare sector, it negatively impacts teamwork, communication, and potentially compromises patient care. While concerns about workplace SH, including in healthcare, are long-standing, the #MeToo movement has brought renewed scrutiny to this issue since late 2017. Despite increased awareness, evidence suggests that SH remains prevalent in healthcare settings and shows no signs of decline over time. Therefore, there is an urgent need for effective training and intervention measures to enhance the identification of potential sexually offensive behaviors, thus fostering a work environment characterized by respect and inclusivity.


Assuntos
Pessoal de Saúde , Assédio Sexual , Local de Trabalho , Humanos , Assédio Sexual/prevenção & controle , Pessoal de Saúde/educação
13.
Artigo em Inglês | MEDLINE | ID: mdl-38676843

RESUMO

PURPOSE: Male cancer survivors experience confusion about fertility following cancer treatment. The aims of this study were to evaluate survivors' semen quality in different tumor type groups in China and to analyze the current situation and challenges of male cancer patients with sperm cryopreservation. METHODS: This was a multicenter retrospective study of male patients with cancer who underwent sperm cryopreservation in 16 regions of the national sperm banks over an 11-year period from 2010 to 2020. RESULTS: The number of male cancer patients with sperm cryopreservation showed an overall upward trend. The development of male cancer fertility preservation (FP) in the eastern, central, and western regions of Chinese displayed imbalance. There are seven tumor types for sperm preservation in the top incidence ten tumor types, including lymphoma, leukemia, nasopharyngeal carcinoma, sarcoma, thyroid cancer, and brain tumor. Moreover, nasopharyngeal carcinoma is a high incidence rate in China, which is related to high sperm preservation rate, different from other countries. The most percentage of males receiving sperm cryopreservation in the testicular cancers (15-39 years old) of China in 2020 was 5.55%, 1.29% in the lymphoma, and 0.39% in the leukemia. According to the type of cancer, a statistically significant lower pre-sperm density, total sperm output, and post-sperm density was observed in testicular cancers. It is worth noting that the prevalence of azoospermia 22.2% in leukemia patients attribute to urgent treatment before sperm cryopreservation. Disposition of cryopreserved sperm categories included continued storage (47.2%), discarded (9%), death (0.9%), and use (3.7%). CONCLUSION: This study provides the first comprehensive national statistical census and review of fertility preservation in male cancer patients with respect to trends, prevalence, and cancer types. The development of male cancer fertility preservation in China is imbalanced and percentage of males receiving sperm cryopreservation in the adolescent and young adult cancers was low. Sixteen human sperm banks from China analyze current problems and challenges, and then prioritize steps toward the achievement of the FP strategy framework for Healthy China 2030.

14.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676061

RESUMO

The real-time monitoring and fault diagnosis of modern machinery and equipment impose higher demands on equipment maintenance, with the extraction of morphological characteristics of wear debris in lubricating oil emerging as a critical approach for real-time monitoring of wear, holding significant importance in the field. The online visual ferrograph (OLVF) technique serves as a representative method in this study. Various semantic segmentation approaches, such as DeepLabV3+, PSPNet, Segformer, Unet, and other models, are employed to process the oil wear particle image for conducting comparative experiments. In order to accurately segment the minute wear debris in oil abrasive images and mitigate the influence of reflection and bubbles, we propose a multi-level feature reused Unet (MFR Unet) that enhances the residual link strategy of Unet for improved identification of tiny wear debris in ferrograms, leading to superior segmentation results.

15.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544255

RESUMO

Near-infrared (NIR) spectroscopy is widely used as a nondestructive evaluation (NDE) tool for predicting wood properties. When deploying NIR models, one faces challenges in ensuring representative training data, which large datasets can mitigate but often at a significant cost. Machine learning and deep learning NIR models are at an even greater disadvantage because they typically require higher sample sizes for training. In this study, NIR spectra were collected to predict the modulus of elasticity (MOE) of southern pine lumber (training set = 573 samples, testing set = 145 samples). To account for the limited size of the training data, this study employed a generative adversarial network (GAN) to generate synthetic NIR spectra. The training dataset was fed into a GAN to generate 313, 573, and 1000 synthetic spectra. The original and enhanced datasets were used to train artificial neural networks (ANNs), convolutional neural networks (CNNs), and light gradient boosting machines (LGBMs) for MOE prediction. Overall, results showed that data augmentation using GAN improved the coefficient of determination (R2) by up to 7.02% and reduced the error of predictions by up to 4.29%. ANNs and CNNs benefited more from synthetic spectra than LGBMs, which only yielded slight improvement. All models showed optimal performance when 313 synthetic spectra were added to the original training data; further additions did not improve model performance because the quality of the datapoints generated by GAN beyond a certain threshold is poor, and one of the main reasons for this can be the size of the initial training data fed into the GAN. LGBMs showed superior performances than ANNs and CNNs on both the original and enhanced training datasets, which highlights the significance of selecting an appropriate machine learning or deep learning model for NIR spectral-data analysis. The results highlighted the positive impact of GAN on the predictive performance of models utilizing NIR spectroscopy as an NDE technique and monitoring tool for wood mechanical-property evaluation. Further studies should investigate the impact of the initial size of training data, the optimal number of generated synthetic spectra, and machine learning or deep learning models that could benefit more from data augmentation using GANs.


Assuntos
Análise de Dados , Madeira , Módulo de Elasticidade , Luz , Aprendizado de Máquina
16.
J Environ Manage ; 356: 120733, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531140

RESUMO

In this work, nano zero-valent iron (nZVI) was added to a lab-scale continuous stirring tank reactor (CSTR) for food waste slurry treatment, and the effect of dosing rate and dosage of nZVI were attempted to be changed. The results showed that anaerobic digestion (AD) efficiency and biomethanation stability were optimum under the daily dosing and dosage of 0.48 g/gTCOD. The average daily methane (CH4) yield reached 495.38 mL/gTCOD, which was 43.65% higher than that at control stage, and the maximum CH4 content reached 95%. However, under single dosing rate conditions, high nZVI concentrations caused microbial cell rupture and loosely bound extracellular polymeric substances (LB-EPS) precipitation degradation. The daily dosing rate promoted the hydrogenotrophic methanogenesis pathway, and the activity of coenzyme F420 increased by 400.29%. The microbial analysis indicated that daily addition of nZVI could promote the growth of acid-producing bacteria (Firmicutes and Bacteroidetes) and methanogens (Methanothrix).


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Perda e Desperdício de Alimentos , Ferro , Metano , Alimentos , Reatores Biológicos
17.
Molecules ; 29(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792142

RESUMO

Glycyrrhiza inflata Bat. produces a lot of licorice waste after water extraction, which also retains abundant total flavonoids (TFs) and licochalcone A. However, licorice residue is often wasted due to the lack of good utilization of resources in practical applications. This study first screened the optimal membrane pore size and resin type and then explored the mechanism and conditions of the adsorption of TFs on the resin. Then, different combinations and sequences of membrane and macroporous resin (MR) methods were investigated. It was found that using the membrane method for initial purification, followed by the MR method for further purification, yielded the best purification results. Next, response surface methodology was utilized to investigate the resin's dynamic desorption conditions for TFs. Finally, the TF purity increased from 32.9% to 78.2% (2.38-fold) after purification by a combined membrane-MR process; the purity of licochalcone A increased from 11.63 mg·g-1 to 22.70 mg·g-1 (1.95-fold). This study verified the feasibility of enriching TFs and licochalcone A from licorice residue using a membrane-MR coupling method. In addition, a quality-control method was established using a fingerprinting method on the basis of ultrahigh-performance liquid chromatography (UPLC) to ensure the stability of the enrichment process.


Assuntos
Chalconas , Flavonoides , Glycyrrhiza , Chalconas/química , Chalconas/isolamento & purificação , Glycyrrhiza/química , Flavonoides/química , Controle de Qualidade , Porosidade , Cromatografia Líquida de Alta Pressão , Adsorção , Extratos Vegetais/química
18.
Angew Chem Int Ed Engl ; 63(1): e202316039, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983686

RESUMO

A pyrene-fused dimerized electron acceptor has been successfully synthesized and subsequently incorporated as the third component in ternary organic solar cells (OSCs). Diverging from the traditional dimerized acceptors with a linear configuration, this novel electron acceptor displays a distinctive "butterfly-like" structure, comprising two Y-acceptors as wings fused with a pyrene-based backbone. The extended π-conjugated backbone and the electron-donating nature of pyrene enable the new acceptor to show low solubility, elevated glass transition temperature (Tg ), and low-lying frontier energy levels. Consequently, the new dimerized acceptor seamlessly integrates as the third component into ternary OSCs, enhancing electron transporting properties, reducing non-radiative voltage loss, and elevating open-circuit voltage. These merits have enabled the ternary OSCs to show an exceptional efficiency of 19.07%, a marked improvement compared to the 17.6% attained in binary OSCs. More importantly, the high Tg exhibited by the pyrene-fused electron acceptor helps to stabilize the morphology of the photoactive layer thermal-treated at 70 °C, retaining 88.7% efficiency over 600 hours. For comparison, binary OSCs experience a decline to 73.7% efficiency after the same duration. These results indicate that the "butterfly-like" design and the incorporation of a pyrene unit is a promising strategy in the development of dimerized electron acceptors for OSCs.

19.
Angew Chem Int Ed Engl ; 63(25): e202403015, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623043

RESUMO

Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.

20.
J Med Virol ; 95(2): e28574, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772841

RESUMO

Human cytomegalovirus (HCMV) preferentially targets neural progenitor cells (NPCs) in congenitally infected fetal brains, inducing neurodevelopmental disorders. While HCMV expresses several microRNAs (miRNAs) during infection, their roles in NPC infection are unclear. Here, we characterized expression of cellular and viral miRNAs in HCMV-infected NPCs during early infection by microarray and identified seven differentially expressed cellular miRNAs and six significantly upregulated HCMV miRNAs. Deep learning approaches were used to identify potential targets of significantly upregulated HCMV miRNAs against differentially expressed cellular messenger RNA (mRNAs), and the associations with miRNA-mRNA expression changes were observed. Gene ontology enrichment analysis indicated cellular gene targets were significantly enriched in pathways involved in neurodevelopment and cell-cycle processes. Viral modulation of selected miRNAs and cellular gene targets involved in neurodevelopmental processes were further validated by real-time quantitative reverse transcription polymerase chain reaction. Finally, a predicted 3' untranslated region target site of hcmv-miR-US25-1 in Jag1, a factor important for neurogenesis, was confirmed by mutagenesis. Reduction of Jag1 RNA and protein levels in NPCs was observed in response to transient expression of hcmv-miR-US25-1. A hcmv-miR-US25-1 mutant virus (ΔmiR-US25) displayed limited ability to downregulate Jag1 mRNA levels and protein levels during the early infection stage compared with the wild type virus. Our collective experimental and computational investigation of miRNAs and cellular mRNAs expression in HCMV-infected NPCs yields new insights into the roles of viral miRNAs in regulating NPC fate and their contributions to HCMV neuropathogenesis.


Assuntos
Infecções por Citomegalovirus , MicroRNAs , Humanos , MicroRNAs/genética , Citomegalovirus/genética , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA