RESUMO
The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.
RESUMO
Solid-state batteries have fascinated the research community over the past decade, largely due to their improved safety properties and potential for high-energy density. Searching for fast ion conductors with sufficient electrochemical and chemical stabilities is at the heart of solid-state battery research and applications. Recently, significant progress has been made in solid-state electrolyte development. Sulfide-, oxide-, and halide-based electrolytes have been able to achieve high ionic conductivities of more than 10-3 S/cm at room temperature, which are comparable to liquid-based electrolytes. However, their stability toward Li metal anodes poses significant challenges for these electrolytes. The existence of non-Li cations that can be reduced by Li metal in these electrolytes hinders the application of Li anode and therefore poses an obstacle toward achieving high-energy density. The finding of antiperovskites as ionic conductors in recent years has demonstrated a new and exciting solution. These materials, mainly constructed from Li (or Na), O, and Cl (or Br), are lightweight and electrochemically stable toward metallic Li and possess promising ionic conductivity. Because of the structural flexibility and tunability, antiperovskite electrolytes are excellent candidates for solid-state battery applications, and researchers are still exploring the relationship between their structure and ion diffusion behavior. Herein, the recent progress of antiperovskites for solid-state batteries is reviewed, and the strategies to tune the ionic conductivity by structural manipulation are summarized. Major challenges and future directions are discussed to facilitate the development of antiperovskite-based solid-state batteries.
RESUMO
The evolution of inorganic solid electrolytes has revolutionized the field of sustainable organic cathode materials, particularly by addressing the dissolution problems in traditional liquid electrolytes. However, current sulfide-based all-solid-state lithium-organic batteries still face challenges such as high working temperatures, high costs, and low voltages. Here, we design an all-solid-state lithium battery based on a cost-effective organic cathode material phenanthrenequinone (PQ) and a halide solid electrolyte Li2ZrCl6. Thanks to the good compatibility between PQ and Li2ZrCl6, the PQ cathode achieved a high specific capacity of 248â mAh g-1 (96 % of the theoretical capacity), a high average discharge voltage of 2.74â V (vs. Li+/Li), and a good capacity retention of 95 % after 100â cycles at room temperature (25 °C). Furthermore, the interactions between the high-voltage carbonyl PQ cathode and both sulfide and halide solid electrolytes, as well as the redox mechanism of the PQ cathode in all-solid-state batteries, were carefully studied by a variety of advanced characterizations. We believe such a design and the corresponding investigations into the underlying chemistry give insights for the further development of practical all-solid-state lithium-organic batteries.
RESUMO
Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Lix YI3+x (x=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Lix YI3+x SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10-3 â S cm-1 at 25 °C for Li4 YI7 . Additionally, the promising Li-metal compatibility of Li4 YI7 is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.
RESUMO
The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.
RESUMO
BACKGROUND: The long non-coding RNA HOXA transcript at the distal tip (HOTTIP) and homeobox A13 (HOXA13) have been identified as oncogenes that play a pivotal role in tumorigenesis. However, their specific mechanisms of action in nasopharyngeal carcinoma (NPC) progression remain unclear. METHODS AND RESULTS: In the present study, RT-qPCR was employed to quantify RNA expression in NPC cells and tissues. Flow cytometry, MTT, CCK8 and colony formation assays were utilized to assess cell apoptosis and proliferation. Transwell assay was conducted to evaluate migration and invasion while Western blotting was performed for protein expression analysis. Our findings revealed that the expression of HOTTIP was significantly upregulated in NPC cell lines. Inhibition of HOTTIP could induce apoptosis and suppress proliferation, clonogenicity, invasion and metastasis in NPC cells. Knockdown of HOTTIP led to downregulation of HOXA13 expression, which subsequently inhibited the proliferation and metastasis in NPC cells. The inhibitory effects on cell proliferation and metastasis caused by HOTTIP silencing were rescued by HOXA13 overexpression. Additionally, there was a significant positive correlation between HOTTIP and HOXA13, which were found to be elevated in NPC tissues compared to normal tissues. CONCLUSIONS: We have determined that LncRNA HOTTIP facilitates tumorigenesis by modulating the expression of HOXA13 in NPC cells. Targeting HOTTIP/HOXA13 may be a promising therapeutic strategy for NPC.
Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
BACKGROUND: This retrospective study was performed to determine the prognostic potential of smoking and its combination with pre-treatment plasma Epstein-Barr virus (EBV) DNA levels in patients with nasopharyngeal carcinoma (NPC). METHODS: Medical records of 1080 non-metastatic NPC patients who received intensity-modulated radiotherapy were reviewed. Male patients were categorized as never and ever smokers, and the smoking amount, duration, and cumulative consumption were used to evaluate dose-dependent effects. Survival outcomes were assessed using Kaplan-Meier survival analysis and the multivariate Cox regression analysis. Propensity score matching (PSM) was constructed. RESULTS: The 5-year overall survival (OS) was worse for ever smokers than never smokers, and significantly decreased with the increase of smoking amount, duration, and cumulative consumption. Compared with never smokers, the multivariate-adjusted hazard ratio (HR) of death was higher in ever smokers (HR = 1.361, P = 0.049), those smoked ≥20 cigarettes/day (HR = 1.473, P = 0.017), those smoked for ≥30 years (HR = 1.523, P = 0.023), and those cumulative smoked for ≥30 pack-years (HR = 1.649, P = 0.005). The poor prognostic effects of smoking was also confirmed in the PSM analysis. The combination of cumulative smoking consumption and pre-treatment EBV DNA levels was proven to be an independent poor prognostic factor for male NPC, and the risk of death, progression, and distant metastases gradually increased with both factors (P < 0.001). CONCLUSIONS: Combination of smoking and pre-treatment EBV DNA levels as a predictor of poor prognosis could further improve the risk stratification and prognostication for NPC.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Masculino , Carcinoma Nasofaríngeo/patologia , Herpesvirus Humano 4/genética , Estudos Retrospectivos , Neoplasias Nasofaríngeas/patologia , Fumar/efeitos adversos , Seguimentos , DNA Viral , PrognósticoRESUMO
BACKGROUND: Our purpose is to develop a model combining radiomic features of radiotherapy localisation computed tomography and clinical characteristics that can be used to estimate overall survival in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy following induction chemotherapy. METHODS: We recruited 145 patients with pathologically confirmed nasopharyngeal carcinoma between February 2012 and April 2015. In total, 851 radiomic features were extracted from radiotherapy localisation computed tomography images for the gross tumour volume of the nasopharynx and the gross tumour volume of neck metastatic lymph nodes. The least absolute shrinkage and selection operator algorithm was applied to select radiomics features, build the model and calculate the Rad-score. The patients were divided into high- and low-risk groups based on their Rad-scores. A nomogram for estimating overall survival based on both radiomic and clinical features was generated using multivariate Cox regression hazard models. Prediction reliability was evaluated using Harrell's concordance index. RESULTS: In total, seven radiomic features and one clinical characteristic were extracted for survival analysis, and the combination of radiomic and clinical features was a better predictor of overall survival (concordance index = .849 [confidence interval: .782-.916]) than radiomic features (concordance index = .793 [confidence interval: .697-.890]) or clinical characteristics (concordance index = .661 [confidence interval: .673-.849]) alone. CONCLUSION: Our results show that a nomogram combining radiomic features of radiotherapy localisation computed tomography and clinical characteristics can predict overall survival in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy following induction chemotherapy more effectively than radiomic features or clinical characteristics alone.
Assuntos
Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Quimioterapia de Indução , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Prognóstico , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodosRESUMO
Energy storage and conversion systems, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting, have played vital roles in the reduction of fossil fuel usage, addressing environmental issues and the development of electric vehicles. The fabrication and surface/interface engineering of electrode materials with refined structures are indispensable for achieving optimal performances for the different energy-related devices. Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques, the gas-phase thin film deposition processes with self-limiting and saturated surface reactions, have emerged as powerful techniques for surface and interface engineering in energy-related devices due to their exceptional capability of precise thickness control, excellent uniformity and conformity, tunable composition and relatively low deposition temperature. In the past few decades, ALD and MLD have been intensively studied for energy storage and conversion applications with remarkable progress. In this review, we give a comprehensive summary of the development and achievements of ALD and MLD and their applications for energy storage and conversion, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting. Moreover, the fundamental understanding of the mechanisms involved in different devices will be deeply reviewed. Furthermore, the large-scale potential of ALD and MLD techniques is discussed and predicted. Finally, we will provide insightful perspectives on future directions for new material design by ALD and MLD and untapped opportunities in energy storage and conversion.
RESUMO
Fanconi anemia complementation group D2 (FANCD2) has been associated with the sensitivity of tumor cells to DNA crosslinking damaging agents in certain solid tumors. However, its role in nasopharyngeal carcinoma (NPC) is still unclear. In the present study, the role of FANCD2 in the response of NPC CNE-2 cells to radiation was investigated. A CNE-2 cell model with stable FANCD2 silencing was constructed by lentiviral transfection. Fluorescence quantitative PCR and western blotting were used to evaluate FANCD2 expression in CNE-2 cells. The biological impact of FANCD2 silencing on the response of CNE-2 cells to radiation was investigated in vitro and in vivo. The microarray technology, western blotting, and immunohistochemistry were used to analyze the proteins involved in related pathways after irradiation to investigate the underlying mechanism. Lentivirus-mediated shRNA interference stably silenced the FANCD2 gene in CNE-2 cells. In vitro, in the FANCD2-silenced group, cell proliferation was significantly inhibited, apoptosis was increased, and the cell cycle was arrested at the G2/M phase after irradiation. In vivo, FANCD2 silencing slowed tumor growth, as the volume and weight of the xenograft tumors were significantly decreased. Both in vitro and in vivo, the differentially expressed genes NUPR1, FLI1, and FGF21 were downregulated in the FANCD2-silenced group. Our results show that FANCD2 silencing affected the sensitivity of CNE-2 cells to ionizing radiation by regulating cell proliferation, apoptosis, and cell cycle distribution. The mechanism might be associated with changes in NUPR1, FLI1, and FGF21 protein expression due to the FANCD2 silencing. This study provides a promising target for NPC radiotherapy.
Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animais , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , RNA Interferente Pequeno/genética , Tolerância a Radiação , Radiação IonizanteRESUMO
The high ionic conductivity, air/humidity tolerance, and related chemistry of Li3MX6 solid-state electrolytes (SSEs, M is a metal element, and X is a halogen) has recently gained significant interest. However, most of the halide SSEs suffer from irreversible chemical degradation when exposed to a humid atmosphere, which originates from hydrolysis. Herein, the function of the M atom in Li3MX6 was clarified by a series of Li3Y1-xInxCl6 (0 ≤ x < 1). When the ratio of In3+ was increased, a gradual structural conversion from the hexagonal-closed-packed (hcp) anion arrangement to cubic-closed-packed (ccp) anion arrangement has been traced. Compared to hcp anion sublattice, the Li3MX6 with ccp anion sublattice reveals faster Li+ migration. The tolerance of Li3Y1-xInxCl6 towards humidity is highly improved when the In3+ content is high enough due to the formation of hydrated intermediates. The correlations among composition, structure, Li+ migration, and humidity stability presented in this work provide insights for designing new halide-based SSEs.
RESUMO
Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3 It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.
RESUMO
Sodium-ion batteries are potential low-cost alternatives to current lithium-ion technology, yet their performances still fall short of expectation due to the lack of suitable electrode materials with large capacity, long-term cycling stability, and high-rate performance. In this work, we demonstrated that ultrasmall (â¼5 nm) iron selenide (FeSe2) nanoparticles exhibited a remarkable activity for sodium-ion storage. They were prepared from a high-temperature solution method with a narrow size distribution and high yield and could be readily redispersed in nonpolar organic solvents. In ether-based electrolyte, FeSe2 nanoparticles exhibited a large specific capacity of â¼500 mAh/g (close to the theoretical limit), high rate capability with â¼250 mAh/g retained at 10 A/g, and excellent cycling stability at both low and high current rates by virtue of their advantageous nanosizing effect. Full sodium-ion batteries were also constructed from coupling FeSe2 with NASICON-type Na3V2(PO4)3 cathode and demonstrated impressive capacity and cycle ability.
RESUMO
Nasopharyngeal carcinoma (NPC) is a highly prevalent head and neck malignancy in southern China frequently diagnosed at advanced stages owing to subtle early symptoms and associated metastasis. Angiogenesis emerges as a pivotal factor in NPC progression, with numerous angiogenesis-related factors showing aberrant expression and contributing to increased neovascularization within NPC tumors. These abnormal vessels not only nourish tumor growth but also facilitate metastasis, culminating in unfavorable patient outcomes. Multiple studies have demonstrated the applicability of various imaging techniques for assessing angiogenesis in NPC tumors, thus serving as a foundation for personalized treatment strategies and prognostic assessments. Anti-angiogenic therapies have exhibited significant potential for inhibiting NPC angiogenesis and exerting anti-tumor effects. To enhance efficacy, anti-angiogenic drugs are frequently combined with other treatment modalities to synergistically enhance anti-tumor effects while mitigating the side effects associated with single-agent therapies, consequently improving patient prognosis. Identifying the potential mechanisms and key targets underlying NPC angiogenesis and exploring more effective detection and treatment approaches holds promise for shaping the future of NPC diagnosis, treatment, and prognosis, thereby offering new avenues and perspectives for research and clinical practice.
RESUMO
Background: Lung cancer causes significant mortality, with invasion and metastasis being the main features that cause most cancer deaths. Lymph node metastasis is the primary metastatic route in non-small cell carcinoma (NSCLC) and influences the staging and prognosis of NSCLC. Cumulative studies have reported that Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is involved in the progression of various cancers. However, few studies have discussed the function of CEACAM1 in lymphangiogenesis in NSCLC. Here, we examined how CEACAM1 influences lymphangiogenesis in NSCLC. Methods: A total of 30 primary squamous cell carcinoma (LUSC) patients diagnosed with LN metastasis were prospectively selected. LUSC tumor tissues, para-cancerous tissues, and positive lymph node tissues were harvested. The expression and subcellular location of CEACAM1, CD31, and LVYE1 in clinical samples were detected by immunohistochemistry. Next, the CEACAM1 and hsa-miR-423-5p expressions were detected by qPCR. The protein expression of lymphangiogenesis-associated proteins and critical cytokines of the NF-κB pathway in HDLECs was detected by Western blot. A tube formation assay was performed to detect the lymphangiogenesis in different groups. The interaction between CEACAM1 and hsa-miR-423-5p was verified using a dual luciferase assay. Results: CEACAM1 was found to be a potential gene associated with lung cancer prognosis. It was positively correlated with angiogenesis and lymphangiogenesis. Then, we detected the function of CEACAM1 in lymphangiogenesis and found that CEACAM1 promoted lymphangiogenesis. hsa-miR-423-5p overexpression inhibited lymphangiogenesis via targeting CEACAM1. Finally, we observed that CEACAM1 can activate the NF-κB pathway and, therefore, promote lymphangiogenesis. Conclusion: We found that CEACAM1 enhanced lymphangiogenesis in NSCLC via NF-kB activation and was repressed by miR-423-5p. This suggests the value of CEACAM1 as a new therapeutic marker in NSCLC.
RESUMO
Porcine epidemic diarrhea virus (PEDV) is a rapidly evolving virus that causes outbreaks in pig herds worldwide. Mutations in the S protein of PEDV have led to the emergence of new viral variants, which can reduce vaccine immunity against prevalent strains. To understand the infection and variation pattern of PEDV in China, an extensive epidemiological survey was conducted in northeast China from 2015 to 2022. The genetic diversity of enteroviruses co-infected with PEDV and the PEDV S gene was analyzed, common mutation patterns that may have led to changes in PEDV virulence and infectivity in recent years were identified, and structural changes in the surface of the S protein resulting from mutations in the PEDV S gene from 2011 to 2022 were reviewed. Of note, two distinct mutations in the emerging 2022 HEB strain were identified. These findings provide a basis for a better understanding of PEDV co-infection and genetic evolution in northeast China.
RESUMO
The development of solid-state sodium-ion batteries (SSSBs) heavily hinges on the development of an superionic Na+ conductor (SSC) that features high conductivity, (electro)chemical stability, and deformability. The construction of heterogeneous structures offers a promising approach to comprehensively enhancing these properties in a way that differs from traditional structural optimization. Here, this work exploits the structural variance between high- and low-coordination halide frameworks to develop a new class of halide heterogeneous structure electrolytes (HSEs). The halide HSEs incorporating a UCl3 -type high-coordination framework and amorphous low-coordination phase achieves the highest Na+ conductivity (2.7 mS cm-1 at room temperature, RT) among halide SSCs so far. By discerning the individual contribution of the crystalline bulk, amorphous region, and interface, this work unravels the synergistic ion conduction within halide HSEs and provides a comprehensive explanation of the amorphization effect. More importantly, the excellent deformability, high-voltage stability, and expandability of HSEs enable effective SSSB integration. Using a cold-pressed cathode electrode composite of uncoated Na0.85 Mn0.5 Ni0.4 Fe0.1 O2 and HSEs, the SSSBs present stable cycle performance with a capacity retention of 91.0% after 100 cycles at 0.2 C.
RESUMO
Homeobox A13 (HOXA13) has been verified as an oncogen in some malignancies. However, its role in nasopharyngeal carcinoma (NPC) is still unclear. This study aims to explore the role of HOXA13 in NPC and its underlying mechanism. The mRNA expression of HOXA13 in NPC was obtained from the GSE53819 and GSE64634 datasets in the Gene Expression Omnibus (GEO) database. MTT, colony formation and transwell assays and xenograft tumour models were used to investigate the effects of HOXA13 on NPC HNE1 cells in vitro and in vivo. The expression of HOXA13, epithelial-mesenchymal transition-transcription factor (EMT-TF) Snail and matrix metalloproteinase 2 (MMP-2) was detected by immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The results showed that HOXA13 was upregulated in NPC. Silencing HOXA13 suppressed the proliferation, migration, and invasion of HNE1 cells, which inhibited tumour growth, while overexpression of HOXA13 induced the opposite effects. In addition, the expression of Snail and MMP-2 at the transcriptional and protein levels was associated with the expression of HOXA13. In summary, our results suggest that HOXA13 plays a role as a cancer-promoting gene in NPC. The underlying mechanism may be related to the upregulation of Snail and MMP-2.
Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Metaloproteinase 2 da Matriz/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologiaRESUMO
All-solid-state lithium-sulfur batteries offer a compelling opportunity for next-generation energy storage, due to their high theoretical energy density, low cost, and improved safety. However, their widespread adoption is hindered by an inadequate understanding of their discharge products. Using X-ray absorption spectroscopy and time-of-flight secondary ion mass spectrometry, we reveal that the discharge product of all-solid-state lithium-sulfur batteries is not solely composed of Li2S, but rather consists of a mixture of Li2S and Li2S2. Employing this insight, we propose an integrated strategy that: (1) manipulates the lower cutoff potential to promote a Li2S2-dominant discharge product and (2) incorporates a trace amount of solid-state catalyst (LiI) into the S composite electrode. This approach leads to all-solid-state cells with a Li-In alloy negative electrode that deliver a reversible capacity of 979.6 mAh g-1 for 1500 cycles at 2.0 A g-1 at 25 °C. Our findings provide crucial insights into the discharge products of all-solid-state lithium-sulfur batteries and may offer a feasible approach to enhance their overall performance.
RESUMO
Solid electrolyte is vital to ensure all-solid-state batteries with improved safety, long cyclability, and feasibility at different temperatures. Herein, we report a new family of amorphous solid electrolytes, xLi2O-MCly (M = Ta or Hf, 0.8 ≤ x ≤ 2, y = 5 or 4). xLi2O-MCly amorphous solid electrolytes can achieve desirable ionic conductivities up to 6.6 × 10-3 S cm-1 at 25 °C, which is one of the highest values among all the reported amorphous solid electrolytes and comparable to those of the popular crystalline ones. The mixed-anion structural models of xLi2O-MCly amorphous SEs are well established and correlated to the ionic conductivities. It is found that the oxygen-jointed anion networks with abundant terminal chlorines in xLi2O-MCly amorphous solid electrolytes play an important role for the fast Li-ion conduction. More importantly, all-solid-state batteries using the amorphous solid electrolytes show excellent electrochemical performance at both 25 °C and -10 °C. Long cycle life (more than 2400 times of charging and discharging) can be achieved for all-solid-state batteries using the xLi2O-TaCl5 amorphous solid electrolyte at 400 mA g-1, demonstrating vast application prospects of the oxychloride amorphous solid electrolytes.