RESUMO
Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to ß-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals ß-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate ß-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of â¼16-fold. Facilitated by such a self-activation process, the specially prepared ß-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.
RESUMO
Polarization of optical fields is a crucial degree of freedom in the all-optical analogue of electromagnetically induced transparency (EIT). However, the physical origins of EIT and polarization-induced phenomena have not been well distinguished, which can lead to confusion in associated applications such as slow light and optical/quantum storage. Here we study the polarization effects in various optical EIT systems. We find that a polarization mismatch between whispering gallery modes in two indirectly coupled resonators can induce a narrow transparency window in the transmission spectrum resembling the EIT lineshape. However, such polarization-induced transparency (PIT) is distinct from EIT: It originates from strong polarization rotation effects and shows a unidirectional feature. The coexistence of PIT and EIT provides additional routes for the manipulation of light flow in optical resonator systems.
RESUMO
Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light-matter interactions in a very confined volume. Examples of such devices include mechanical transducers, magnetometers, single-particle absorption spectrometers, and microcavity sensors for sizing single particles and detecting nanometre-scale objects such as single nanoparticles and atomic ions. Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points. In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points. A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.
RESUMO
Basic leucine zipper (bZIP) transcription factors (TFs) are one of the largest families involved in plant physiological processes such as biotic and abiotic responses, growth, and development, etc. In this study, 66 members of the bZIP family were identified in Bletilla striata, which were divided into 10 groups based on their phylogenetic relationships with AtbZIPs. A structural analysis of BsbZIPs revealed significant intron-exon differences among BsbZIPs. A total of 63 bZIP genes were distributed across 16 chromosomes in B. striata. The tissue-specific and germination stage expression patterns of BsbZIPs were based on RNA-seq. Stress-responsive expression analysis revealed that partial BsbZIPs were highly expressed under low temperatures, wounding, oxidative stress, and GA treatments. Furthermore, subcellular localization studies indicated that BsbZIP13 was localized in the nucleus. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays suggested that BsbZIP13 could interact with multiple BsSnRK2s. The results of this study provide insightful data regarding bZIP TF as one of the stress response regulators in B. striata, while providing a theoretical basis for transgenic and functional studies of the bZIP gene family in B. striata.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Estresse Fisiológico , Filogenia , Estresse Fisiológico/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse Oxidativo , Íntrons/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão GênicaRESUMO
Direct observation of oxygen evolution reaction (OER) on catalyst surface may significantly advance the mechanistic understanding of OER catalysis. Here, we report the first real-time nanoscale observation of chemical OER on Mn2O3 nanocatalyst surface using an in situ liquid holder in a transmission electron microscope (TEM). The oxygen evolution process can be directly visualized from the development of oxygen nanobubbles around nanocatalysts. The high spatial and temporal resolution further enables us to unravel the real-time formation of a surface layer on Mn2O3, whose thickness oscillation reflects a partially reversible surface restructuring relevant to OER catalysis. Ex situ atomic-resolution TEM on the residual surface layer after OER reveals its amorphous nature with reduced Mn valence and oxygen coordination. Besides shedding light on the dynamic OER catalysis, our results also demonstrate a powerful strategy combining in situ and ex situ TEM for investigating various chemical reaction mechanisms in liquid.
RESUMO
The authors have retracted this article.
RESUMO
OBJECTIVE: To determine the impact of the SIMPL-SYNC refill synchronization (SSRS) service compared with that of usual care (UC) on medication adherence when applied as an opt-out strategy among patients receiving chronic medications. DESIGN: This was a pragmatic randomized controlled trial. SETTING AND PARTICIPANTS: The study was conducted in 2 community pharmacies located in Saskatchewan, Canada. Eligible patients were chronic medication users visiting the study pharmacies. OUTCOME MEASURES: The primary outcome was the percentage of individuals achieving optimal adherence to all eligible study medications. Eligible study medications included 22 commonly used medication classes used to treat diverse conditions. Adherence was assessed for each medication class after 300 days using the proportion of days covered (PDC). Optimal adherence was defined as PDC ≥ 80%. RESULTS: A total of 488 patients were screened for eligibility, and 190 patients were included in the intention-to-treat analysis (95 in SSRS, 95 in UC). The mean age of participants was 59 years, and 34% (65/190) were older than 65 years. A total of 574 individual adherence observations representing the 22 eligible study medication classes were generated from the 190 study participants. The percentage of individuals achieving optimal adherence to all their eligible study medications was 50.5% (48/95) in the SSRS group versus 44.2% (42/95) in the UC group (P = 0.383). Similarly, no statistically significant difference was observed in a per-protocol analysis assessing people who participated fully in the service; the percentage of individuals achieving optimal adherence to all their eligible study medications was 55.1% (38/69) in SSRS versus 40.7% (33/81) in UC (P = 0.080). Patient refusal of the refill synchronization services was common among randomized patients. CONCLUSION: SSRS service failed to detect a robust improvement in medication adherence when delivered using an opt-out strategy. However, small improvements in adherence or benefits to specific subgroups of patients could not be ruled out.
Assuntos
Adesão à Medicação , Farmácias , Canadá , Humanos , Pessoa de Meia-IdadeRESUMO
Bletilla striata polysaccharide (BSP) is the main component of Bletilla striata, which has important pharmacological and pharmacological effects; however, due to the lack of genetic data, the metabolic pathways of BSP remain unclear. For this study, 11 representative resources of B. striata were analyzed, and the BSP contents of the different samples were significantly different; however, the monosaccharide composition of BSP was glucose and mannose. The representative samples were selected to observe their life history in situ, which were then divided and cultured in a greenhouse. Finally, samples from various organs of different plants were combined for transcriptome sequencing using the Illumina system. Our results summarized the BSP metabolic pathway, and we found that there were eight enzyme genes involved in biosynthesis, but these genes showed tissue specificity. Following qRT-PCR validation and comparative analysis, manA showed the highest expression; however, there were significant differences between the two germplasm resources in which the BSP content was significantly different, while UGP2, GPI, PMM, and GMPP had significant differences between the two samples. In summary, this study lays the foundation for further research into BSP metabolism and other physiological processes at the molecular level.
RESUMO
BACKGROUND: Lymph-vascular space invasion (LVSI) is an unfavorable prognostic factor in cervical cancer. Unfortunately, there are no current clinical tools for the preoperative prediction of LVSI. PURPOSE: To develop and validate an axial T1 contrast-enhanced (CE) MR-based radiomics nomogram that incorporated a radiomics signature and some clinical parameters for predicting LVSI of cervical cancer preoperatively. STUDY TYPE: Retrospective. POPULATION: In all, 105 patients were randomly divided into two cohorts at a 2:1 ratio. FIELD STRENGTH/SEQUENCE: T1 CE MRI sequences at 1.5T. ASSESSMENT: Univariate analysis was performed on the radiomics features and clinical parameters. Multivariate analysis was performed to determine the optimal feature subset. The receiver operating characteristic (ROC) analysis was performed to evaluate the performance of prediction model and radiomics nomogram. STATISTICAL TESTS: The Mann-Whitney U-test and the chi-square test were used to evaluate the performance of clinical characteristics and LVSI status by pathology. The minimum-redundancy/maximum-relevance and recursive feature elimination methods were applied to select the features. The radiomics model was constructed using logistic regression. RESULTS: Three radiomics features and one clinical characteristic were selected. The radiomics nomogram showed favorable discrimination between LVSI and non-LVSI groups. The AUC was 0.754 (95% confidence interval [CI], 0.6326-0.8745) in the training cohort and 0.727 (95% CI, 0.5449-0.9097) in the validation cohort. The specificity and sensitivity were 0.756 and 0.828 in the training cohort and 0.773 and 0.692 in the validation cohort. DATA CONCLUSION: T1 CE MR-based radiomics nomogram serves as a noninvasive biomarker in the prediction of LVSI in patients with cervical cancer preoperatively. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1420-1426.
Assuntos
Metástase Linfática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nomogramas , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/patologia , Colo do Útero/diagnóstico por imagem , Colo do Útero/patologia , Estudos de Coortes , Meios de Contraste , Feminino , Humanos , Aumento da Imagem/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e EspecificidadeRESUMO
We develop a compact whispering-gallery-mode (WGM) sensing system by integrating multiple components, including a tunable laser, a temperature controller, a function generator, an oscilloscope, a photodiode detector, and a testing computer, into a phone-sized embedded system. We demonstrate a thermal sensing experiment by using this portable system. Such a system successfully eliminates bulky measurement equipment required for characterizing optical resonators and will open up new avenues for practical sensing applications by using ultra-high Q WGM resonators.
RESUMO
We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are on the order of 105. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with a sensitivity of -1.17 nm/K, that is 8 times higher than previous WGM resonator-based thermal sensors. This opens the way to fabricate biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications.
RESUMO
Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 µm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.
RESUMO
Deep rock are often in a true triaxial stress state. Studying the impacts of varying unloading speeds on their strain energy (SE) density is highly significant for predicting rock stability. Through true triaxial unloading principal stress experiments and true triaxial stress equilibrium unloading experiments on sandstone, this paper proposes a method to compute the SE density in a true triaxial compressive unloading principal stress test. This method aims to analyze the SE variation in rocks under the action of true triaxial unloading principal stresses. Acoustic emission is used to verify the correctness of the SE density calculation method in this paper. This study found that: (1) Unloading in one principal stress direction causes the SE density to rise in the other principal stress directions. This rise in SE, depending on its reversibility, can be categorized into elastic and dissipated SE. (2)When unloading principal stresses, the released elastic SE density in the unloading direction is influence by the stress path and rate. (3) The higher the unloading speed will leads to greater increases in the input SE density, elastic SE density, and dissipative SE density in the other principal stress directions. (4) The dissipated SE generated under true triaxial compression by unloading the principal stress is positively correlated with the damage to the rock; with an increase in unloading rate, there is a corresponding increase in the formation of cracks after unloading. (5) Utilizing the stress balance unloading test, we propose a calculation method for SE density in true triaxial unloading principal stress tests.
RESUMO
This study comprehensively assesses spatial distribution, pollution levels, and potential sources of heavy metal(loid)s in surface sediments across multiple river systems along the coastal area of the East China Sea. Copper in Qiantang River and Xiangshan Bay showed higher concentations and exceeded the threshold effect value, while the higher content of Lead was mainly found in the Saijiang River, Oujiang River, and Minjiang River. Heavy metal(loid)s in the alluvium of Qiantang River, Jiaojiang River, and Yangtze River showed low to moderate pollution levels, with Cd posing the highest ecological risk, followed by Hg. Meanwhile, Qiantang River, Jiaojiang River, Yangtze River, and Oujiang River exhibited considerable to moderate ecological risks and low toxic risk. PMF model analysis results reveal that concentrations of Cr, Ni, and As were closely related with natural geogenic input (36.56 %), while industrial and traffic activities (48.77 %) were primary source of Cu, Pb, Zn, and Hg, and main source of Cd was agricultural emissions (14.67 %).
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/análise , Sedimentos Geológicos/química , China , Medição de Risco , Poluentes Químicos da Água/análise , Rios/químicaRESUMO
Gout flare-up, commonly resulting from monosodium urate monohydrate (MSUM) crystallization, has led to painful inflammatory arthritis among hundreds of millions of people. Herein, a kind of hydrogel nanoparticles (HNPs) with specific properties was developed, aimed at providing a promising pathway for MSUM crystallization control. The experimental and molecular dynamics simulation results synchronously indicate that the fabricated HNPs achieve efficient inhibition of MSUM crystallization governed by the mechanism of "host-guest interaction" even under very low-dose administration. HNPs as the host dispersed in the hyperuricemic model effectively lift the relative heterogeneous nucleation barrier of the MSUM crystal and hinder solute aggregation with strong electronegativity and hydrophobicity. The initial appearance of MSUM crystals was then delayed from 94 to 334 h. HNPs as the guest on the surface of the formed crystal can decelerate the growth rate by anchoring ions and occupying the active sites on the surface, and the terminal yield of the MSUM crystal declined to less than 1% of the control group. The good biocompatibility of HNPs (cell viability > 94%) renders it possible for future clinical applications. This study can guide the rational design of inhibitory nanomaterials and the development of their application in the control of relevant pathological crystallization.
Assuntos
Cristalização , Hidrogéis , Simulação de Dinâmica Molecular , Nanopartículas , Ácido Úrico , Ácido Úrico/química , Hidrogéis/química , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Tamanho da Partícula , Íons/química , Propriedades de SuperfícieRESUMO
Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as - 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.
RESUMO
The heavy metal (Cr, Cu, Ni, Pb, and Zn) content and particle size of surface sediment samples taken from 123 sites in the Bohai Strait of China were analyzed. All five heavy metals showed a similar distribution in the Bohai Strait, with lower concentrations in the middle and higher concentrations at the sides of the strait. The amount of heavy metals was lowest in the Laotieshan Channel due to the rapid current in this channel. According to our calculated values of the pollution index (Pi), only 1.6 % of the sample sites were polluted by Cr and Cu. The calculated geo-accumulation index (Igeo) values showed that few of the sites were polluted by heavy metals. The level of Pb was controlled by both terrigenous inputs and clay adsorption, while the levels of the other heavy metals (Cr, Cu, Ni, and Zn) were mainly controlled by terrigenous inputs.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Chumbo , Monitoramento Ambiental , Metais Pesados/análise , China , Medição de RiscoRESUMO
Estuarine habitats are a critical zone of the Earth with strong land-sea interactions, that are strongly influenced by human activities. Microplastics (MPs) pollution in the Yellow River Delta (YRD) wetland, a typical young warm-temperate estuarine wetland, has not been comprehensively studied. The morphology, abundance, particle size, and polymer composition of MPs in the surface sediments of the YRD wetland were determined, and the pollution status and ecological risk in the study area were evaluated using the pollution load index (PLI) and potential pollution risk index (PRI). The results showed that the abundance of MPs in the YRD wetland was 20-520 n·kg-1, with a median value of 150 n·kg-1. The MPs were primarily fibers in shape and black in color, with particle size over 1 mm. The polymer components were primarily rayon, polyethylene, polyester, and polyethylene terephthalate. The PLI and PRI values of the MPs in the area were between 0.04-0.96 and 0.00-171.60, respectively, indicating that the pollution of MPs in the YRD wetland was at a slightly polluted level with low ecological risk.
RESUMO
A thorough understanding of the evolution of coastal brine-bearing groundwater systems under the influence of human activities contributes to the sustainable use of coastal groundwater resources. Therefore, this study comprehensively investigated the processes associated with hydrochemical changes in groundwater during brine exploitation based on long-term monitoring data. The dataset comprised 102 samples (including groundwater, seawater, rain and river samples) collected from 1966 to 2021 to capture the hydrochemical variability. Significant changes in the brine water table and concentration between the pre-overexploitation period (1965-2000) and the exploitation period (2000-2021) are observed. From the relationship between stable isotope (δ18O and δ2H) values and Cl- contents, shallow saline water (SSW) near the drawdown cone (with δ18O and δ2H values of -4.66 ~ -3.57 and - 42.1 ~ -32.8 , respectively) is similar geochemically to the brine inside the drawdown cone (with values of -4.30 ~ -3.10 and - 39.0 ~ -32.3 , respectively), indicating that the SSW has a recharge effect on the underground brine. The delta values of major cations were calculated to analyze the hydrochemical processes at different water quality interfaces (saline/freshwater interface, salinewater/brine interface). The results demonstrated that the SSW and deep saline water (DSW) at the offshore brine/saline water interface undergo seawater intrusion, where SSW undergoes a salinization process with cation exchange (Na+ is exchanged for Ca2+ and Mg2+ in clay), while DSW undergoes a freshening process. The SSW at the saline/freshwater interface is affected by freshwater pumping, and the DSW undergoes a salinization process influenced by brine intrusion presenting the common salinization process with cation exchange. The hydrochemical model shows that the brine concentration recovered during the restricted exploitation stage due to the dissolution of gypsum and halite. If no measures are taken to restrict exploitation, then brine will eventually be replaced by saline water.