Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 27(1): 47, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705912

RESUMO

BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. METHODS: High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA-promoter and tsRNA-mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. RESULTS: Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3'-untranslated region (UTR)-targeted manner. CONCLUSIONS: During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation.


Assuntos
MicroRNAs , Miócitos de Músculo Liso , Regiões 3' não Traduzidas , Aorta/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia
2.
J Cell Mol Med ; 24(8): 4762-4772, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32155686

RESUMO

Vascular smooth muscle cell (VSMC) proliferation is the pathological base of vascular remodelling diseases. Circular RNAs (circRNAs) are important regulators involved in various biological processes. However, the function of circRNAs in VSMC proliferation regulation remains largely unknown. This study was conducted to identify the key differentially expressed circRNAs (DEcircRNAs) and predict their functions in human aortic smooth muscle cell (HASMC) proliferation. To achieve this, DEcircRNAs between proliferative and quiescent HASMCs were detected using a microarray, followed by quantitative real-time RT-PCR validation. A DEcircRNA-miRNA-DEmRNA network was constructed, and functional annotation was performed using Gene Ontology (GO) and KEGG pathway analysis. The function of hsa_circ_0002579 in HASMC proliferation was analysed by Western blot. The functional annotation of the DEcircRNA-miRNA-DEmRNA network indicated that the four DEcircRNAs might play roles in the TGF-ß receptor signalling pathway, Ras signalling pathway, AMPK signalling pathway and Wnt signalling pathway. Twenty-seven DEcircRNAs with coding potential were screened. Hsa_circ_0002579 might be a pro-proliferation factor of HASMC. Overall, our study identified the key DEcircRNAs between proliferative and quiescent HASMCs, which might provide new important clues for exploring the functions of circRNAs in vascular remodelling diseases.


Assuntos
Aorta/crescimento & desenvolvimento , Proliferação de Células/genética , Músculo Liso Vascular/crescimento & desenvolvimento , RNA Circular/genética , Aorta/metabolismo , Técnicas de Cultura de Células , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética
4.
Microb Cell Fact ; 16(1): 17, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137282

RESUMO

BACKGROUND: Microbial production of monoterpenes provides a promising substitute for traditional chemical-based methods, but their production is lagging compared with sesquiterpenes. Geraniol, a valuable monoterpene alcohol, is widely used in cosmetic, perfume, pharmaceutical and it is also a potential gasoline alternative. Previously, we constructed a geraniol production strain by engineering the mevalonate pathway together with the expression of a high-activity geraniol synthase. RESULTS: In this study, we further improved the geraniol production through reducing the endogenous metabolism of geraniol and controlling the precursor geranyl diphosphate flux distribution. The deletion of OYE2 (encoding an NADPH oxidoreductase) or ATF1 (encoding an alcohol acetyltransferase) both involving endogenous conversion of geraniol to other terpenoids, improved geraniol production by 1.7-fold or 1.6-fold in batch fermentation, respectively. In addition, we found that direct down-regulation of ERG20 expression, the branch point regulating geranyl diphosphate flux, does not improve geraniol production. Therefore, we explored dynamic control of ERG20 expression to redistribute the precursor geranyl diphosphate flux and achieved a 3.4-fold increase in geraniol production after optimizing carbon source feeding. Furthermore, the combination of dynamic control of ERG20 expression and OYE2 deletion in LEU2 prototrophic strain increased geraniol production up to 1.69 g/L with pure ethanol feeding in fed-batch fermentation, which is the highest reported production in engineered yeast. CONCLUSION: An efficient geraniol production platform was established by reducing the endogenous metabolism of geraniol and by controlling the flux distribution of the precursor geranyl diphosphate. The present work also provides a production basis to synthesis geraniol-derived chemicals, such as monoterpene indole alkaloids.


Assuntos
Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos , Regulação para Baixo , Fermentação , Engenharia Metabólica/métodos , Monoterpenos/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas/genética , Proteínas/metabolismo
5.
Dev Biol ; 398(2): 242-54, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25527076

RESUMO

Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification.


Assuntos
Condrócitos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Osteogênese , Proteínas Repressoras/metabolismo , Animais , Osso e Ossos/metabolismo , Células COS , Calcificação Fisiológica , Chlorocebus aethiops , Condrócitos/patologia , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Extremidades/embriologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Hipertrofia , Integrases/metabolismo , Camundongos Transgênicos , Ligação Proteica , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
6.
Appl Microbiol Biotechnol ; 100(10): 4561-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883346

RESUMO

Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.


Assuntos
Difosfatos/metabolismo , Diterpenos/metabolismo , Monoterpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos , Técnicas de Cultura Celular por Lotes , Regulação para Baixo , Escherichia coli/genética , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Ácido Mevalônico/metabolismo , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sesquiterpenos/metabolismo
7.
Dev Biol ; 387(1): 64-72, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24394376

RESUMO

Defects of the ventral body wall are prevalent birth anomalies marked by deficiencies in body wall closure, hypoplasia of the abdominal musculature and multiple malformations across a gamut of organs. However, the mechanisms underlying ventral body wall defects remain elusive. Here, we investigated the role of Wnt signaling in ventral body wall development by inactivating Wls or ß-catenin in murine abdominal ectoderm. The loss of Wls in the ventral epithelium, which blocks the secretion of Wnt proteins, resulted in dysgenesis of ventral musculature and genito-urinary tract during embryonic development. Molecular analyses revealed that the dermis and myogenic differentiation in the underlying mesenchymal progenitor cells was perturbed by the loss of ectodermal Wls. The activity of the Wnt-Pitx2 axis was impaired in the ventral mesenchyme of the mutant body wall, which partially accounted for the defects in ventral musculature formation. In contrast, epithelial depletion of ß-catenin or Wnt5a did not resemble the body wall defects in the ectodermal Wls mutant. These findings indicate that ectodermal Wnt signaling instructs the underlying mesodermal specification and abdominal musculature formation during ventral body wall development, adding evidence to the theory that ectoderm-mesenchyme signaling is a potential unifying mechanism for the origin of ventral body wall defects.


Assuntos
Abdome/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Desenvolvimento Muscular/genética , Receptores Acoplados a Proteínas G/fisiologia , Via de Sinalização Wnt/genética , beta Catenina/fisiologia , Abdome/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Ectoderma/embriologia , Ectoderma/crescimento & desenvolvimento , Ectoderma/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/genética , Sistema Urogenital/embriologia , Sistema Urogenital/crescimento & desenvolvimento , Proteínas Wnt/deficiência , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , beta Catenina/genética , Proteína Homeobox PITX2
8.
IDCases ; 36: e01954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659622

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disease characterized by a hyperinflammatory syndrome and impairment of multiple organ systems. Talaromycosis marneffei (TSM) is an opportunistic infection mostly found in immunosuppressed populations, such as those with acquired immunodeficiency syndrome (AIDS), and is prevalent in southern China. However, HLH secondary to TSM is extremely rare and has only been reported in isolated cases. A 30-year-old patient with recurrent high fever and progressive cytopenia was diagnosed with HLH secondary to disseminated TSM with AIDS and Alpha-thalassemia. The patient remained in sustained remission without recurrence after effective treatment with antifungals and glucocorticoids.

9.
Microbiol Res ; 286: 127815, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38944943

RESUMO

Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.

10.
Microorganisms ; 12(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930556

RESUMO

Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study demonstrates the effective conversion of poplar wood waste into fuel-grade ethanol. By employing a two-step pretreatment using sodium chlorite (SC)-dilute sulfuric acid (DSA), the raw material achieved a sugar conversion rate exceeding 85% of the theoretical value. Under optimized conditions, brewing yeast co-utilizing C6/C5 enabled a yield of 35 g/L ethanol from 10% solid loading delignified poplar hydrolysate. We increased the solid loading to enhance the final ethanol concentration and optimized both the hydrolysis and fermentation stages. With 20% solid loading delignified poplar hydrolysate, the final ethanol concentration reached 60 g/L, a 71.4% increase from the 10% solid loading. Our work incorporates the pretreatment, enzymatic hydrolysis, and fermentation stages to establish a simple, crude poplar waste fuel ethanol process, expanding the range of feedstocks for second-generation fuel ethanol production.

11.
Dev Biol ; 369(2): 308-18, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22819676

RESUMO

It is generally thought that vertebral patterning and identity are globally determined prior to somite formation. Relatively little is known about the regulators of vertebral specification after somite segmentation. Here, we demonstrated that Ndrg2, a tumor suppressor gene, was dynamically expressed in the presomitic mesoderm (PSM) and at early stage of differentiating somites. Loss of Ndrg2 in mice resulted in vertebral homeotic transformations in thoracic/lumbar and lumbar/sacral transitional regions in a dose-dependent manner. Interestingly, the inactivation of Ndrg2 in osteoblasts or chondrocytes caused defects resembling those observed in Ndrg2(-/-) mice, with a lower penetrance. In addition, forced overexpression of Ndrg2 in osteoblasts or chondrocytes also conferred vertebral defects, which were distinct from those in Ndrg2(-/-) mice. These genetic analyses revealed that Ndrg2 modulates vertebral identity in segmented somites rather than in the PSM. At the molecular level, combinatory alterations of the amount of Hoxc8-11 gene transcripts were detected in the differentiating somites of Ndrg2(-/-) embryos, which may partially account for the vertebral defects in Ndrg2 mutants. Nevertheless, Bmp/Smad signaling activity was elevated in the differentiating somites of Ndrg2(-/-) embryos. Collectively, our findings unveiled Ndrg2 as a novel regulator of vertebral specification in differentiating somites.


Assuntos
Proteínas/metabolismo , Somitos/embriologia , Somitos/metabolismo , Coluna Vertebral/embriologia , Coluna Vertebral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Primers do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genes Homeobox , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Gravidez , Proteínas/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2334-2358, 2023 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-37401597

RESUMO

As a generally-recognized-as-safe microorganism, Saccharomyces cerevisiae is a widely studied chassis cell for the production of high-value or bulk chemicals in the field of synthetic biology. In recent years, a large number of synthesis pathways of chemicals have been established and optimized in S. cerevisiae by various metabolic engineering strategies, and the production of some chemicals have shown the potential of commercialization. As a eukaryote, S. cerevisiae has a complete inner membrane system and complex organelle compartments, and these compartments generally have higher concentrations of the precursor substrates (such as acetyl-CoA in mitochondria), or have sufficient enzymes, cofactors and energy which are required for the synthesis of some chemicals. These features may provide a more suitable physical and chemical environment for the biosynthesis of the targeted chemicals. However, the structural features of different organelles hinder the synthesis of specific chemicals. In order to ameliorate the efficiency of product biosynthesis, researchers have carried out a number of targeted modifications to the organelles grounded on an in-depth analysis of the characteristics of different organelles and the suitability of the production of target chemicals biosynthesis pathway to the organelles. In this review, the reconstruction and optimization of the biosynthesis pathways for production of chemicals by organelle mitochondria, peroxisome, golgi apparatus, endoplasmic reticulum, lipid droplets and vacuole compartmentalization in S. cerevisiae are reviewed in-depth. Current difficulties, challenges and future perspectives are highlighted.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo de Golgi/metabolismo , Engenharia Metabólica , Vacúolos/metabolismo
13.
Nat Commun ; 14(1): 4648, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532688

RESUMO

Development of effective recycling strategies for cathode materials in spent lithium-ion batteries are highly desirable but remain significant challenges, among which facile separation of Al foil and active material layer of cathode makes up the first important step. Here, we propose a reaction-passivation driven mechanism for facile separation of Al foil and active material layer. Experimentally, >99.9% separation efficiency for Al foil and LiNi0.55Co0.15Mn0.3O2 layer is realized for a 102 Ah spent cell within 5 mins, and ultrathin, dense aluminum-phytic acid complex layer is in-situ formed on Al foil immediately after its contact with phytic acid, which suppresses continuous Al corrosion. Besides, the dissolution of transitional metal from LiNi0.55Co0.15Mn0.3O2 is negligible and good structural integrity of LiNi0.55Co0.15Mn0.3O2 is well-maintained during the processing. This work demonstrates a feasible approach for Al foil-active material layer separation of cathode and can promote the green and energy-saving battery recycling towards practical applications.

14.
Front Med ; 17(5): 889-906, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418076

RESUMO

Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin's lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Humanos , Variações do Número de Cópias de DNA , Proteínas Nucleares/genética , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Fatores de Transcrição/genética , Prognóstico , Linfoma/genética , Genômica , China , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
15.
J Agric Food Chem ; 71(41): 15224-15236, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811818

RESUMO

Saccharomyces cerevisiae has emerged as a preferred source for industrial production of ribonucleic acids (RNAs) and their derivatives, which find wide applications in the food and pharmaceutical sectors. In this study, we employed a modified RNA polymerase I-mediated green fluorescent protein expression system, previously developed by our team, to screen and identify an industrial S. cerevisiae strain with an impressive 18.2% increase in the RNA content. Transcriptome analysis revealed heightened activity of genes and pathways associated with rRNA transcription, purine metabolism, and phosphate transport in the high nucleic acid content mutant strains. Our findings highlighted the crucial role of the transcription factor Sfp1p in enhancing the expression of two key components of the transcription initiation factor complex, Rrn7p and Rrn11p, thereby promoting rRNA synthesis. Moreover, elevated expression of 5'-inosine monophosphate dehydrogenases, regardless of the specific isoform (IMD2, 3, or 4), resulted in increased rRNA synthesis through heightened GTP levels. Additionally, exogenous phosphate application, coupled with overexpression of the phosphate transporter PHO84, led to a 61.4% boost in the RNA yield, reaching 2050.4 mg/L. This comprehensive study provides valuable insights into the mechanism of RNA synthesis and serves as a reference for augmenting RNA production in the food industry.


Assuntos
Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA/metabolismo , Fosfatos/metabolismo , Ácidos Nucleicos/metabolismo
16.
Bioresour Bioprocess ; 10(1): 41, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647809

RESUMO

A suitable nutrient supply, especially of vitamins, is very significant for the deep display of the inherent genetic properties of microorganisms. Here, using the chemically defined minimal medium (MM) for yeast, nicotinamide and inositol were confirmed to be more beneficial for the performance of two industrial baker's yeasts, a conventional and a high-sugar-tolerant strain. Increasing nicotinamide or inositol to proper levels could enhance the both strains on cell growth and activity and product performance, including trehalose accumulation and leavening performance. The activity of key enzymes (PCK, TPS) and the content of intermediate metabolites (G6P, UDPG) in the trehalose synthesis pathway were promoted by a moderate supply of nicotinamide and inositol. That were also proved that an appropriate amount of niacinamide promoted the transcription of longevity-related genes (PNC1, SIR2), and the proper concentration of inositol altered the phospholipid composition in cells, namely, phosphatidylinositol and phosphatidyl choline. Furthermore, the cell growth and the leavening performance of the both strains were promoted after adjusting inositol to choline to the proper ratio, resulting directly in content changes of phosphatidylinositol and phosphatidyl choline in the cells. While the two strains responded to the different proper ratio of inositol to choline probably due to their specific physiological characteristics. Such beneficial effects of increased nicotinamide levels were confirmed in natural media, molasses and corn starch hydrolyzed sugar media. Meanwhile, such adjustment of inositol to choline ratio could lessen the inhibition of excess inositol on cell growth of the two tested strains in corn starch hydrolyzed sugar media. However, in molasse, such phenomenon was not observed probably since there was higher Ca2+ in it. The results indicated that the effects of nutrient factors, such as vitamins, on cell growth and other properties found out from the simple chemically defined minimal medium were an effective measure to use in improving the recipe of natural media at least for baker's yeast.

17.
Hematology ; 28(1): 2288477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38038062

RESUMO

Patients with hematologic malignancies are often immunodeficient and therefore have a higher risk of severe symptoms from coronavirus disease 2019 (COVID-19). We retrospectively examined a cohort of 289 patients from 16 hospitals in Zhejiang Province who had hematologic malignancies and COVID-19 during a period when the Omicron variant was predominant. Univariate analysis showed that some clinical characteristics, including elder age (P = 0.014), multiple comorbid conditions (P = 0.011), and receipt of active antineoplastic therapy (P = 0.018) were associated with an increased risk of severe COVID-19. Patients with severe/critical COVID-19 had significantly lower levels of lymphocytes and serum albumin, and significantly higher levels of D-dimer, lactate dehydrogenase, C-reactive protein, and interleukin-6 (all P < 0.05). Fifty-four patients (18.7%) had symptoms lasting ≥3 weeks, suggesting that persistent long-term COVID-19 infection is likely present in a significant proportion of patients. Receipt of the inactivated vaccine was unrelated to disease severity (P = 0.143), which indicated that many patients with hematologic malignancies may not have effective humoral immunity to inactivated vaccines.


Assuntos
COVID-19 , Neoplasias Hematológicas , Humanos , COVID-19/complicações , População do Leste Asiático , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/epidemiologia , Estudos Retrospectivos
18.
Microorganisms ; 10(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296281

RESUMO

Saccharomyces cerevisiae has been widely used as a microbial cell factory to produce recombinant proteins. Therefore, enhancing the protein production efficiency of yeast cell factories to expand the market demand for protein products is necessary. Recombinant proteins are often retained in the secretory pathway because of the limited protein transport performed by vesicle trafficking. Cell polarization describes the asymmetric organization of the plasma membrane cytoskeleton and organelles and tightly regulates vesicle trafficking for protein transport. Engineering vesicle trafficking has broadly been studied by the overexpression or deletion of key genes involved but not by modifying cell polarization. Here, we used α-amylase as a reporter protein, and its secretion and surface-display were first improved by promoter optimization. To study the effect of engineering cell polarization on protein production, fourteen genes related to cell polarization were overexpressed. BUD1, CDC42, AXL1, and BUD10 overexpression increased the activity of surface-displayed α-amylase, and BUD1, BUD3, BUD4, BUD7, and BUD10 overexpression enhanced secreted α-amylase activity. Furthermore, BUD1 overexpression increased the surface-displayed and secreted α-amylase expression by 56% and 49%, respectively. We also observed that the combinatorial modification and regulation of gene expression improved α-amylase production in a dose-dependent manner. BUD1 and CDC42 co-overexpression increased the α-amylase surface display by 100%, and two genomic copies of BUD1 improved α-amylase secretion by 92%. Furthermore, these modifications were used to improve the surface display and secretion of the recombinant ß-glucosidase protein. Our study affords a novel insight for improving the surface display and secretion of recombinant proteins.

19.
mSystems ; 7(2): e0136621, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35229648

RESUMO

Malonyl-coenzyme A (malonyl-CoA) is an important precursor for producing various chemicals, but its low availability limits the synthesis of downstream products in Saccharomyces cerevisiae. Owing to the complexity of metabolism, evolutionary engineering is required for developing strains with improved malonyl-CoA synthesis. Here, using the biosensor we constructed previously, a growth-based screening system that links the availability of malonyl-CoA with cell growth is developed. Coupling this system with in vivo continuous mutagenesis enabled rapid generation of genome-scale mutation library and screening strains with improved malonyl-CoA availability. The mutant strains are analyzed by whole-genome sequencing and transcriptome analysis. The omics analysis revealed that the carbon flux rearrangement to storage carbohydrate and amino acids synthesis affected malonyl-CoA metabolism. Through reverse engineering, new processes especially reduced lysine and arginine synthesis were found to improve malonyl-CoA synthesis. Our study provides a valuable complementary tool to other high-throughput screening method for mutant strains with improved metabolite synthesis and improves our understanding of the metabolic regulation of malonyl-CoA synthesis. IMPORTANCE Malonyl-CoA is a key precursor for the production a variety of value-added chemicals. Although rational engineering has been performed to improve the synthesis of malonyl-CoA in S. cerevisiae, due to the complexity of the metabolism there is a need for evolving strains and analyzing new mechanism to improve malonyl-CoA flux. Here, we developed a growth-based screening system that linked the availability of malonyl-CoA with cell growth and manipulated DNA replication for rapid in vivo mutagenesis. The combination of growth-based screening with in vivo mutagenesis enabled quick evolution of strains with improved malonyl-CoA availability. The whole-genome sequencing, transcriptome analysis of the mutated strains, together with reverse engineering, demonstrated weakening carbon flux to lysine and arginine synthesis and storage carbohydrate can contribute to malonyl-CoA synthesis. Our work provides a guideline in simultaneous strain screening and continuous evolution for improved metabolic intermediates and identified new targets for improving malonyl-CoA downstream product synthesis.


Assuntos
Técnicas Biossensoriais , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Lisina/genética , Malonil Coenzima A/análise , Mutagênese , Carboidratos , Técnicas Biossensoriais/métodos , Arginina/genética
20.
Sheng Wu Gong Cheng Xue Bao ; 37(3): 1042-1057, 2021 Mar 25.
Artigo em Zh | MEDLINE | ID: mdl-33783167

RESUMO

Effective utilization of xylose is a basis for economic production of biofuels or chemicals from lignocellulose biomass. Over the past 30 years, through metabolic engineering, evolutionary engineering and other strategies, the metabolic capacity of xylose of the traditional ethanol-producing microorganism Saccharomyces cerevisiae has been significantly improved. In recent years, the reported results showed that the transcriptome and metabolome profiles between xylose and glucose metabolism existed significant difference in recombinant yeast strains. Compared with glucose, the overall process of xylose metabolism exhibits Crabtree-negative characteristics, including the limited glycolytic pathway activity, which reduces the metabolic flux of pyruvate to ethanol, and the enhanced cytosolic acetyl-CoA synthesis and respiratory energy metabolism. These traits are helpful to achieve efficient synthesis of downstream products using pyruvate or acetyl-CoA as precursors. This review provides a detailed overview on the modification and optimization of xylose metabolic pathways in S. cerevisiae, the characteristics of xylose metabolism, and the construction of cell factories for production of chemicals using xylose as a carbon source. Meanwhile, the existed difficulties and challenges, and future studies on biosynthesis of bulk chemicals using xylose as an important carbon source are proposed.


Assuntos
Saccharomyces cerevisiae , Xilose , Biocombustíveis , Etanol , Fermentação , Engenharia Metabólica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA