Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.122
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192031

RESUMO

Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.

2.
Proc Natl Acad Sci U S A ; 120(6): e2213163120, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716377

RESUMO

Material fluxes at the land-ocean interface impact seawater composition and global cycling of elements. However, most attention has been focused on the fluvial dissolved fluxes. For elements like lead (Pb), whose fluvial particulate flux into the ocean is two orders of magnitude higher than the dissolved counterpart, the role of particulates in elemental cycling is potentially important but currently less appreciated. Using both chemical analyses on samples collected from around equatorial Southeast Asia and model simulations, we show that particulate-dissolved exchange is an important mechanism controlling the concentration and isotopic composition of dissolved Pb in the ocean. Our model indicates that Pb contributed from particulate-dissolved exchange at ocean boundaries is larger than, or at least comparable to, other major Pb sources to the seawater before the Anthropocene, when the anthropogenic Pb was absent. Our work highlights the importance of boundary exchange in understanding marine element cycling and weathering-climate feedback.

3.
Plant J ; 118(6): 1991-2002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549549

RESUMO

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Proteínas de Plantas , Raízes de Plantas , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Ácidos Indolacéticos/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
4.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970674

RESUMO

Regulation by the small modifier SUMO is heavily dependent on spatial control of enzymes that mediate the attachment and removal of SUMO on substrate proteins. Here, we show that in the fission yeast Schizosaccharomyces pombe, delocalisation of the SUMO protease Ulp1 from the nuclear envelope results in centromeric defects that can be attributed to hyper-SUMOylation at the nuclear periphery. Unexpectedly, we find that although this localised hyper-SUMOylation impairs centromeric silencing, it can also enhance centromere clustering. Moreover, both effects are at least partially dependent on SUMOylation of the inner nuclear membrane protein Lem2. Lem2 has previously been implicated in diverse biological processes, including the promotion of both centromere clustering and silencing, but how these distinct activities are coordinated was unclear; our observations suggest a model whereby SUMOylation serves as a regulatory switch, modulating Lem2 interactions with competing partner proteins to balance its roles in alternative pathways. Our findings also reveal a previously unappreciated role for SUMOylation in promoting centromere clustering.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sumoilação , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Centrômero/genética , Centrômero/metabolismo , Proteínas de Membrana/metabolismo , Análise por Conglomerados
5.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35319746

RESUMO

For in vivo functional analysis of a protein of interest (POI), multiple transgenic strains with a POI that harbors different tags are needed but generation of these strains is still labor-intensive work. To overcome this, we have developed a versatile Drosophila toolkit with a genetically encoded single-chain variable fragment for the HA epitope tag: 'HA Frankenbody'. This system allows various analyses of HA-tagged POI in live tissues by simply crossing an HA Frankenbody fly with an HA-tagged POI fly. Strikingly, the GFP-mCherry tandem fluorescent-tagged HA Frankenbody revealed a block in autophagic flux and an accumulation of enlarged autolysosomes in the last instar larval and prepupal fat body. Mechanistically, lysosomal activity was downregulated at this stage, and endocytosis, but not autophagy, was indispensable for the swelling of lysosomes. Furthermore, forced activation of lysosomes by fat body-targeted overexpression of Mitf, the single MiTF/TFE family gene in Drosophila, suppressed the lysosomal swelling and resulted in pupal lethality. Collectively, we propose that downregulated lysosomal function in the fat body plays a role in the metamorphosis of Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Autofagia/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Larva/metabolismo , Lisossomos/metabolismo
6.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815230

RESUMO

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Assuntos
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Estresse Fisiológico/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Apoptosis ; 29(3-4): 556-567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114800

RESUMO

Cytokine release syndrome (CRS) is a great challenge for the application of anti-CD19 CAR-T cell therapy. The aim of this study was to investigate the effect of knocking down interferon gamma (IFN-γ) by shRNA as a potential strategy to reduce the cytokine storms. A newly designed short hairpin interference RNA of IFN-γ (shIFN-γ) in CD19CAR gene was constructed. Several cellular model systems of approach using Nalm-6 cell lines including Nalm-6CD19pos and Nalm-6CD19neg with or without monocytes and endothelial cells were used to analyze the different levels of cytokines after shIFN-γ-anti-CD19CAR-T cell targeted therapy. The activity of this novel CD19CAR-T was evaluated both in vitro and in NSG mouse model. The killing efficacy of shIFN-γ-anti-CD19CAR-T at the E:T ratio of 2:1 was similar to that of regular anti-CD19CAR-T at the E:T ratio of 1:1. The IFN-γ level in the shIFN-γ-anti-CD19CAR-T cell group was (2673.1 ± 307.4) pg/ml at the E:T ratio of 2:1 which was significantly lower than that ((8261.5 ± 345.5) pg/ml) in the regular anti-CD19CAR-T group at the E:T ratio of 1:1. Cytotoxicity experiments in vitro showed significantly reduced concentrations of IFN-γ, IL-6 and TNFα in the shIFN-γ-anti-CD19CAR-T cell group compared to regular anti-CD19CAR-T cell group. Both regular anti-CD19CAR and shIFN-γ-CD19CAR-T exerted bystander killing effect in vitro. We conclude that shIFN-γ-anti-CD19CAR-T cells can reduce the generation of cytokine storms without significantly compromising their therapeutic efficacy in the preclinical setting. In mouse model, 3 × 106 shIFN-γ-anti-CD19CAR-T cells/mouse generated the similar killing efficacy to that with 2 × 106 regular anti-CD19CAR-T cells/mouse.


Assuntos
Citocinas , Interferon gama , Animais , Camundongos , Citocinas/genética , Interferon gama/genética , Síndrome da Liberação de Citocina , Células Endoteliais , Apoptose
8.
Apoptosis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853201

RESUMO

This study delivers a thorough analysis of long non-coding RNAs (lncRNAs) in regulating programmed cell death (PCD), vital for neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). We propose a new framework PCDLnc, and identified 20 significant lncRNAs, including HEIH, SNHG15, and SNHG5, associated with PCD gene sets, which were known for roles in proliferation and apoptosis in neurodegenerative diseases. By using GREAT software, we identified regulatory functions of top lncRNAs in different neurodegenerative diseases. Moreover, lncRNAs cis-regulated mRNAs linked to neurodegeneration, including JAK2, AKT1, EGFR, CDC42, SNCA, and ADIPOQ, highlighting their therapeutic potential in neurodegenerative diseases. A further exploration into the differential expression of mRNA identified by PCDLnc revealed a role in apoptosis, ferroptosis and autophagy. Additionally, protein-protein interaction (PPI) network analysis exposed abnormal interactions among key genes, despite their consistent expression levels between disease and normal samples. The randomforest model effectively distinguished between disease samples, indicating a high level of accuracy. Shared gene subsets in AD and PD might serve as potential biomarkers, along with disease-specific gene sets. Besides, we also found the strong relationship between AD and immune infiltration. This research highlights the role of lncRNAs and their associated genes in PCD in neurodegenerative diseases, offering potential therapeutic targets and diagnostic markers for future study and clinical application.

9.
Funct Integr Genomics ; 24(2): 72, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594466

RESUMO

BACKGROUND: Colorectal cancer is a malignant tumor of the digestive system originating from abnormal cell proliferation in the colon or rectum, often leading to gastrointestinal symptoms and severe health issues. Nucleotide metabolism, which encompasses the synthesis of DNA and RNA, is a pivotal cellular biochemical process that significantly impacts both the progression and therapeutic strategies of colorectal cancer METHODS: For single-cell RNA sequencing (scRNA-seq), five functions were employed to calculate scores related to nucleotide metabolism. Cell developmental trajectory analysis and intercellular interaction analysis were utilized to explore the metabolic characteristics and communication patterns of different epithelial cells. These findings were further validated using spatial transcriptome RNA sequencing (stRNA-seq). A risk model was constructed using expression profile data from TCGA and GEO cohorts to optimize clinical decision-making. Key nucleotide metabolism-related genes (NMRGs) were functionally validated by further in vitro experiments. RESULTS: In both scRNA-seq and stRNA-seq, colorectal cancer (CRC) exhibited unique cellular heterogeneity, with myeloid cells and epithelial cells in tumor samples displaying higher nucleotide metabolism scores. Analysis of intercellular communication revealed enhanced signaling pathways and ligand-receptor interactions between epithelial cells with high nucleotide metabolism and fibroblasts. Spatial transcriptome sequencing confirmed elevated nucleotide metabolism states in the core region of tumor tissue. After identifying differentially expressed NMRGs in epithelial cells, a risk prognostic model based on four genes effectively predicted overall survival and immunotherapy outcomes in patients. High-risk group patients exhibited an immunosuppressive microenvironment and relatively poorer prognosis and responses to chemotherapy and immunotherapy. Finally, based on data analysis and a series of cellular functional experiments, ACOX1 and CPT2 were identified as novel therapeutic targets for CRC. CONCLUSION: In this study, a comprehensive analysis of NMRGs in CRC was conducted using a combination of single-cell sequencing, spatial transcriptome sequencing, and high-throughput data. The prognostic model constructed with NMRGs shows potential as a standalone prognostic marker for colorectal cancer patients and may significantly influence the development of personalized treatment approaches for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA-Seq , Nucleotídeos , Análise da Expressão Gênica de Célula Única , Transcriptoma , Redes e Vias Metabólicas , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
10.
Anal Chem ; 96(13): 5323-5330, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501982

RESUMO

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Guanina/análogos & derivados , Humanos , DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Biomarcadores , Reparo do DNA
11.
Biochem Biophys Res Commun ; 694: 149403, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38147699

RESUMO

Mounting studies have showed that tumor microenvironment (TME) is crucial for cervical cancer (CC), and cancer-related fibroblasts (CAFs) play a major role in it. Recently, exosomal miRNAs secreted by CAFs have been found to be potential targets for cancer diagnosis and therapy. In this paper, we aimed to investigate the function of CAFs-mediated exosome miR-18a-5p (CAFs-exo-miR-18a-5p) in CC. First, in combination with bioinformatic data analysis of the GEO database (GSE86100) and RT-qPCR of CC clinical tissue samples and cell lines, miR-18a-5p was discovered to be markedly up-regulated in CC. Next, CAFs-secreted exosomes were isolated and it was found that miR-18a-5p expression was dramatically promoted in CC cell lines when treated with CAFs-exos. The CAFs-exo-miR-18a-5p was then elucidated to stimulate the proliferation and migration and inhibit the apoptosis of CC cells. In order to clarify the underlying mechanism, we further screened the target genes of miR-18a-5p. TMEM170B was selected by bioinformatic data analysis of online databases combined with RT-qPCR of CC clinical tissues and cells. Luciferase reporter gene analysis combined with molecular biology experiments further elucidated that miR-18a-5p suppressed TMEM170B expression in CC. Finally, both cell and animal experiments demonstrated that TMEM170B over-expression attenuated the oncogenic effect of CAFs-exo-miR-18a-5p. In conclusion, our study indicates that CAFs-mediated exosome miR-18a-5p promotes the initiation and development of CC by suppressing TMEM170B signaling axis, which provides a possible direction for the diagnosis and therapy of CC.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias do Colo do Útero , Humanos , Animais , Feminino , Exossomos/genética , Exossomos/metabolismo , Neoplasias do Colo do Útero/patologia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
12.
Development ; 148(6)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593816

RESUMO

Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.


Assuntos
Drosophila melanogaster/genética , Epitopos/genética , Peptídeos/genética , Proteínas/genética , Animais , Linhagem Celular , Células Cultivadas , Peptídeos/química , Ligação Proteica/genética , Proteínas/química , Biologia Sintética
13.
BMC Plant Biol ; 24(1): 182, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475753

RESUMO

BACKGROUND: Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS: When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS: In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.


Assuntos
Reguladores de Crescimento de Plantas , Transcriptoma , Gossypium/genética , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica/métodos , Metaboloma , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
14.
J Transl Med ; 22(1): 482, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773607

RESUMO

BACKGROUND: Cellular immunotherapy, represented by the chimeric antigen receptor T cell (CAR-T), has exhibited high response rates, durable remission, and safety in vitro and in clinical trials. Unfortunately, anti-CD19 CAR-T (CART-19) treatment alone is prone to relapse and has a particularly poor prognosis in relapsed/refractory (r/r) B-ALL patients. To date, addressing or reducing relapse remains one of the research priorities to achieve broad clinical application. METHODS: We manufactured second generation CART-19 cells and validated their efficacy and safety in vitro and in vivo. Through co-culture of Nalm-6 cells with short-term cultured CART-19 cells, CD19-negative Nalm-6 cells were detected by flow cytometry, and further investigation of the relapsed cells and their resistance mechanisms was evaluated in vitro. RESULTS: In this study, we demonstrated that CART-19 cells had enhanced and specific antileukemic activities, and the survival of B-ALL mouse models after CART-19 treatment was significantly prolonged. We then shortened the culture time and applied the serum-free culture to expand CAR-T cells, followed by co-culturing CART-19 cells with Nalm-6 cells. Surprisingly, we observed the proliferation of CD19-negative Nalm-6 cells around 28 days. Identification of potential resistance mechanisms showed that the relapsed cells express truncated CD19 proteins with decreased levels and, more importantly, CAR expression was detected on the relapsed cell surface, which may ultimately keep them antigen-negative. Furthermore, it was validated that CART-22 and tandem CART-22/19 cells could effectively kill the relapsed cells, but neither could completely eradicate them. CONCLUSIONS: We successfully generated CART-19 cells and obtained a CD19-negative refractory relapsed B-ALL cell line, providing new insights into the underlying mechanisms of resistance and a new in vitro model for the treatment of r/r B-ALL patients with low antigen density.


Assuntos
Antígenos CD19 , Receptores de Antígenos Quiméricos , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Técnicas de Cocultura , Ensaios Antitumorais Modelo de Xenoenxerto , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia
15.
J Med Virol ; 96(8): e29812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39056206

RESUMO

Currently, the emergence of the endemic Coronavirus disease (COVID-19) situation still poses a serious threat to public health. However, it remains elusive about the role of fecal microbiota transplantation in treating COVID-19. We performed a randomized, double-blind, placebo-controlled clinical trial enrolling a cohort of 40 COVID-19 patients with mild-moderate symptoms. Our results showed that fecal microbiota transplantation provided an amelioration in diarrhoea (p = 0.026) of digestive system and depression (p = 0.006) of neuropsychiatric-related symptom in COVID-19 patients, respectively. Meanwhile, we found that the number of patients with diarrhoea decreased from 19 to 0 on day 7 after fecal microbiota transplantation treatment, and it was statistically changed compared to the placebo group (p = 0.047). Of note, the serum concentration of aspartate aminotransferase-to-alanine aminotransferase ratio (AST/ALT, fecal microbiota transplantation, pre vs. post: 0.966 vs. 0.817), a biomarker for predicting long COVID-19, was significantly reduced by fecal microbiota transplantation. In all, our study supports that fecal microbiota transplantation could be a novel therapeutic strategy for COVID-19 patients with diarrhoea and depressive symptoms, which is potentially valuable in ameliorating long COVID-19 symptoms.


Assuntos
COVID-19 , Depressão , Diarreia , Transplante de Microbiota Fecal , Humanos , Transplante de Microbiota Fecal/métodos , COVID-19/terapia , COVID-19/complicações , Diarreia/terapia , Diarreia/microbiologia , Diarreia/virologia , Masculino , Feminino , Método Duplo-Cego , Pessoa de Meia-Idade , Depressão/terapia , Estudos Prospectivos , Adulto , Idoso , Fezes/microbiologia , Fezes/virologia , SARS-CoV-2 , Resultado do Tratamento , Aspartato Aminotransferases/sangue , Microbioma Gastrointestinal
16.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377782

RESUMO

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Rev Cardiovasc Med ; 25(6): 202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39076323

RESUMO

Background: Clinically useful predictors for risk stratification of long-term survival may assist in selecting patients for endovascular abdominal aortic aneurysm (EVAR) procedures. This study aimed to analyze the prognostic significance of peroperative novel systemic inflammatory markers (SIMs), including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), hemoglobin-to-red cell distribution width ratio (HRR), systemic immune-inflammatory index (SIII), and systemic inflammatory response index (SIRI), for long-term mortality in EVAR. Methods: A retrospective analysis was performed on 147 consecutive patients who underwent their first EVAR procedure at the Department of Vascular Surgery, Beijing Hospital. The patients were divided into the mortality group (n = 37) and the survival group (n = 110). The receiver operating characteristic curves were used to ascertain the threshold value demonstrating the most robust connection with mortality. The Kaplan-Meier survival analysis was performed between each SIM and mortality. The relationship between SIMs and survival was investigated using restricted cubic splines and multivariate Cox regression analysis. Results: The study included 147 patients, with an average follow-up duration of 34.28 ± 22.95 months. Deceased patients showed significantly higher NLR (p < 0.001) and reduced HRR (p < 0.001). The Kaplan-Meier estimates of mortality were considerably greater in the higher-NLR group (NLR > 2.77) and lower-HRR group (HRR < 10.64). The hazard ratio (HR) of 0.833 (95% confidence interval (95% CI): 0.71-0.97, p < 0.021) was determined to be statistically significant in predicting death in the multivariable analysis. Conclusions: Preoperative higher-NLR and lower-HRR have been associated with a lower long-term survival rate in abdominal aortic aneurysm (AAA) patients undergoing elective EVAR. Multivariate Cox regression showed that decreased preoperative HRR is an independent risk factor that increases mortality risk following EVAR. SIMs, such as the NLR and HRR, could be used in future clinical risk prediction methodologies for AAA patients undergoing EVAR. However, additional prospective cohort studies are needed to identify these findings.

18.
Neuroepidemiology ; : 1-12, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134004

RESUMO

OBJECTIVE: Complications or serious adverse events (SAEs) are common in the treatment of patients with large vessel occlusion stroke. There has been limited study of the impact of SAEs for patients after endovascular thrombectomy (EVT). The goal of this study was to characterize the rates and clinical impact of SAEs following EVT. METHODS: A post hoc analysis was performed using pooled databases of the "DEVT" and "RESCUE BT" trials. SAEs were designated as symptomatic intracranial hemorrhage, brain herniation or craniectomy, respiratory failure, circulatory failure, pneumonia, deep venous thrombosis, and systemic bleeding. The primary endpoint was functional independence (modified Rankin scale score 0-2 within 90 days). Logistic regression analysis was used to determine the predictors and associations between SAEs and outcomes. RESULTS: Of 1,182 enrolled patients, 402 (34%) had a procedural complication and 745 (63%) had 1,404 SAE occurrences with 4.65% in-hospital mortality. The three most frequent SAEs were pneumonia (620, 52.5%), systemic bleeding (174, 14.7%), and respiratory failure (173, 14.6%). Pneumonia, systemic bleeding, or deep venous thrombosis was less life-threatening. Patients with advanced age (adjusted odds ratio, 1.28 [95% confidence interval, 1.14-1.43]), higher NIHSS (1.09 [1.06-1.11]), occlusion site (middle cerebral artery-M1 vs. internal carotid artery [ICA]: 0.75 [0.53-1.04]; M2 vs. ICA: 1.30 [0.80-2.12]), longer procedure time (1.01 [1.00-1.01]), and unsuccessful vessel recanalization (1.79 [1.06-2.94]) were more likely to experience SAEs. Compared with no SAE, patients with SAEs had lower odds of functional independence (0.46 [0.40-0.54]). CONCLUSIONS: Overall, SAEs diagnosed following thrombectomy in patients with stroke were common (more than 60%) and associated with functional dependence. Patients with advanced age, higher NIHSS, longer procedure time, and failed recanalization were more likely to experience SAEs. There was no statistical difference in the risk of SAEs among patients with M1 and M2 occluded compared with those ICA occluded. An understanding of the prevalence and predictors of SAEs could alert clinicians to the estimated risk of an SAE for a patient after EVT.

19.
J Neurooncol ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143438

RESUMO

BACKGROUND: Anoikis is a specialized form of programmed cell death induced by the loss of cell adhesion to the extracellular matrix (ECM). Acquisition of anoikis resistance is a significant marker for cancer cell invasion, metastasis, therapy resistance, and recurrence. Although current research has identified multiple factors that regulate anoikis resistance, the pathological mechanisms of anoikis-mediated tumor microenvironment (TME) in glioblastoma (GBM) remain largely unexplored. METHODS: Utilizing single-cell RNA sequencing (scRNA-seq) data and employing non-negative matrix factorization (NMF), we identified and characterized TME cell clusters with distinct anoikis-associated gene signatures. Prognostic and therapeutic response analyses were conducted using TCGA and CGGA datasets to assess the clinical significance of different TME cell clusters. The spatial relationship between BRMS1 + microglia and tumor cells was inferred from spatial transcriptome RNA sequencing (stRNA-seq) data. To simulate the tumor immune microenvironment, co-culture experiments were performed with microglia (HMC3) and GBM cells (U118/U251), and microglia were transfected with a BRMS1 overexpression lentivirus. Western blot or ELISA were used to detect BRMS1, M2 macrophage-specific markers, PI3K/AKT signaling proteins, and apoptosis-related proteins. The proliferation and apoptosis capabilities of tumor cells were evaluated using CCK-8, colony formation, and apoptosis assays, while the invasive and migratory abilities of tumor cells were assessed using Transwell assays. RESULTS: NMF-based analysis successfully identified CD8 + T cell and microglia cell clusters with distinct gene signature characteristics. Trajectory analysis, cell communication, and gene regulatory network analyses collectively indicated that anoikis-mediated TME cell clusters can influence tumor cell development through various mechanisms. Notably, BRMS1 + AP-Mic exhibited an M2 macrophage phenotype and had significant cell communication with malignant cells. Moreover, high expression of BRMS1 + AP-Mic in TCGA and CGGA datasets was associated with poorer survival outcomes, indicating its detrimental impact on immunotherapy. Upregulation of BRMS1 in microglia may lead to M2 macrophage polarization, activate the PI3K/AKT signaling pathway through SPP1/CD44-mediated cell interactions, inhibit tumor cell apoptosis, and promote tumor proliferation and invasion. CONCLUSION: This pioneering study used NMF-based analysis to reveal the important predictive value of anoikis-regulated TME in GBM for prognosis and immunotherapeutic response. BRMS1 + microglial cells provide a new perspective for a deeper understanding of the immunosuppressive microenvironment of GBM and could serve as a potential therapeutic target in the future.

20.
Inorg Chem ; 63(18): 8294-8301, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38650372

RESUMO

Cationic substitution demonstrates significant potential for regulating structural dimensionality and physicochemical performance owing to the cation-size effect. Leveraging this characteristic, this study synthesized a new family of K4AeP2S8 (Ae = alkaline earth elements: Mg, Ca, Sr, and Ba) thiophosphates, involving the substitution of Ae2+ cations. The synthesized compounds crystallized in distinct space groups, monoclinic P2/c (Ae = Mg) versus orthorhombic Ibam (Ae = Ca, Sr, and Ba), exhibiting intriguing dimensionality transformations from zero-dimensional (0D) [Mg2P4S16]8- clusters in K4MgP2S8 to 1D ∞[AeP2S8]4- chains in other K4AeP2S8 thiophosphates owing to the varying ionic radii of Ae2+ cations, Ae-S bond lengths, and coordination numbers of AeSn (Mg: n = 6 versus other: n = 8). Experimental investigations revealed that K4AeP2S8 thiophosphates featured wide optical bandgaps (3.37-3.64 eV), and their optical absorptions were predominantly influenced by the S 3p and P 3s orbitals, with negligible contributions from the K and Ae cations. Notably, within the K4AeP2S8 series, birefringence (Δn) increased from K4MgP2S8 (Δn = 0.034) to other K4AeP2S8 (Δn = 0.050-0.079) compounds, suggesting that infinite 1D chains more significantly influence Δn origins than 0D clusters, thus offering a feasible approach for enhancing optical anisotropy and exploring potential new birefringent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA