RESUMO
Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.
RESUMO
It has been demonstrated that the ATP-gated ion channel P2X7 receptor is involved in tumor progression and plays an important role in regulating tumor cell growth, invasion, migration and angiogenesis. However, P2X7 receptors have been relatively poorly studied in non-small cell lung cancer (NSCLC) cells. Therefore, the aim of this study was to investigate the effects of P2X7 receptor on A549 cells (NSCLC cell line) migration and invasion and to reveal the molecular mechanisms mediated by it. We detected the expression and function of P2X7 receptor in A549 cells. The effects and mechanisms of P2X7 receptor on A549 cells migration, invasion, and epithelial-mesenchymal transition were detected in vitro and in vivo. The results showed P2X7 receptor expressed by A549 cells had ion channel and macropore formation function. In addition, activation of P2X7 receptor by adenosine triphosphate (ATP) or 2'(3')-O-(4-Benzoylbenzoyl)-adenosine-5'-triphosphate (BzATP) promoted Epithelial-mesenchymal transition (EMT), migration and invasion of A549 cells, which was attenuated by treatment of cells with P2X7 receptor antagonist A438079 and Oxidized ATP. Furthermore, activation of P2X7 receptor increased phosphorylated protein kinase B (p-Akt) levels, and the phosphatidylinositol-tris-phosphate kinase 3 (PI3K)/protein kinase B (Akt) inhibitor LY294002 blocked migration and invasion of A549 cells induced by ATP or BzATP. At the same time, in vivo results showed that P2X7 receptor could also promote EMT and PI3K/Akt expression in transplanted tumors. Our study indicated that P2X7 receptor promotes A549 cells migration and invasion through the PI3K/Akt signaling pathway, suggesting that P2X7 receptor may be a potential therapeutic target for NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células A549 , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Receptores Purinérgicos P2X7RESUMO
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a nonselective cation channel of the purinergic receptor family. P2X7R is activated by adenosine triphosphate (ATP) and plays a significant role in inflammatory and autoimmune diseases by triggering cellular signal transduction. More importantly, P2X7R is abnormally expressed in many tumor cells and is involved in the progression of various tumor cells. Studies have shown that the irregular expression of P2X7R in colorectal cancer (CRC) can not only indirectly affect the occurrence and development of CRC by promoting inflammatory bowel disease but also directly affect the proliferation and metastasis of CRC cells. P2X7R plays a bidirectional role in cancer induction and inhibition by mediating complex signaling pathways in CRC, and its expression level is closely related to the overall survival of CRC patients. Therefore, P2X7R may be a biomarker and potential therapeutic target for the development and prognosis of CRC. In this paper, we review the research progress on P2X7R in CRC.
Assuntos
Neoplasias Colorretais , Receptores Purinérgicos P2X7 , Humanos , Trifosfato de Adenosina , Biomarcadores , Carcinogênese , Neoplasias Colorretais/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Transdução de SinaisRESUMO
P2X7 receptor (P2X7R) is highly expressed on immune cells, triggering the release of cytokines and regulating autoimmune responses. To investigate P2X7R surface expression on T helper (Th) 1, Th17, and regulatory T (Treg) cells in patients with systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA) and correlations with disease activity, 29 SLE and 29 RA patients and 18 healthy controls (HCs) were enrolled. We showed that SLE and RA patients had significantly higher levels of plasma cytokines (IFN-γ, IL-1ß, IL-6, IL-17A, and IL-23), frequencies of Th1 and Th17 cells, and expression of P2X7R on Th1 and Th17 than HCs, and the Th17/Treg ratio was significantly increased, whereas Treg cell levels were significantly decreased. The Ca2+ influx increase following BzATP stimulation was significantly higher in CD4+PBMCs from SLE and RA patients than in HCs. Blood levels of shed P2X7R were increased in SLE and RA patients. Furthermore, 28-joint Disease Activity Score and SLE Disease Activity Index score showed negative correlations with Treg cell levels and positive correlations with Th17/Treg ratio and Th17 cell P2X7R expression. Interestingly, Th17 cell P2X7R expression was closely correlated with IL-1ß, C-reactive protein, the erythrocyte sedimentation rate, anticyclic citrullinated peptide Abs, albumin, and C4. These data indicate that increased Th17 cell P2X7R expression is functionally and positively related to disease activity and some inflammatory mediators in SLE and RA patients, and P2X7R could be critical in promoting the Th17 immune response and contributing to the complex pathogenesis of SLE and RA.
Assuntos
Artrite Reumatoide/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores Purinérgicos P2X7/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Doença Aguda , Adulto , Idoso , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Purinérgicos P2X7/genéticaRESUMO
This paper focuses on the production of a high-affinity monoclonal antibody (mAb) that can efficiently detect and block purinergic ligand-gated ion channel 7 receptor (P2X7R). To achieve this goal, the extracellular domain of human P2X7R, P2X7R-ECD, was used as an immunogen for BALB/c mice, inducing them to produce spleen lymphocytes that were subsequently fused with myeloma cells. Screening of the resultant hybridoma clones resulted in the selection of one stable positive clone that produced a qualified mAb, named 4B3A4. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the purity of the purified 4B3A4 mAb was above 85%, with prominent bands corresponding to molecular weights of 55 kDa (heavy chain) and 25 kDa (light chain), and the BCA assay showed that the concentration of the purified 4B3A4 mAb was 0.3 mg/mL. Western blot analysis revealed that the 4B3A4 mAb could specifically recognize and bind both P2X7R-ECD and the full-length P2X7R protein. Laser scanning confocal microscopy (LSCM) revealed that the 4B3A4 mAb specifically bound to P2X7R on the membrane of human peripheral blood mononuclear cells (PBMCs). P2X7R expression was significantly different between healthy individuals and people with certain cancers as determined by flow cytometry (FCM). In addition, the 4B3A4 mAb significantly reduced ATP-stimulated Ca2+ entry and YO-PRO-1 uptake, which indicated that the 4B3A4 mAb effectively blocked P2X7R activity. These data indicate that the 4B3A4 mAb can be further used as not only an antibody to detect cell surface P2X7R but also as a therapeutic antibody to target P2X7R-related signaling pathways.
Assuntos
Anticorpos Monoclonais/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Anticorpos Monoclonais/química , Especificidade de Anticorpos , Benzoxazóis/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Domínios Proteicos , Compostos de Quinolínio/metabolismo , Receptores Purinérgicos P2X7/químicaRESUMO
Accurate and rapid identification of Staphylococcus aureus (S. aureus) is of great significance for controlling the food poisoning and infectious diseases caused by S. aureus. In this study, a novel strategy that combines lysin cell-binding domain (CBD)-based magnetic separation with fluorescence detection was developed for the specific and sensitive quantification of S. aureus in authentic samples. The S. aureus cells were separated from the sample matrix by lysin CBD-functionalized magnetic beads. Following lysis by lysostaphin, intracellular catalase was released from S. aureus cells and detected by a fluorometric system composed of horseradish peroxidase (HRP), hydrogen peroxide (H2O2), and Amplex Red. S. aureus was quantified via the inhibitory effect of the released intracellular catalase on the fluorometric system since the catalase could decompose the H2O2. Optimized conditions afforded a calibration curve for S. aureus ranging from 1.0 × 102 to 1.0 × 107 CFU mL-1. The detection limit was as low as 78 CFU mL-1 in phosphate-buffered saline (PBS), and the total detection process could be completed in less than 50 min. Other bacteria associated with common food-borne and nosocomial infections negligibly interfered with S. aureus detection, except for Staphylococcus epidermidis, which may have slightly interfered. Moreover, the potential of this proposed method for practical applications has been demonstrated by detection assays of sterilized milk and human serum. Graphical abstract.
Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/química , Separação Imunomagnética/instrumentação , Lisostafina/química , Oxazinas/química , Staphylococcus aureus/isolamento & purificação , Animais , Bacteriemia/microbiologia , Sítios de Ligação , Fluorescência , Humanos , Leite/microbiologia , Domínios ProteicosRESUMO
Association studies suggest that TRß1 functions as a tumor suppressor. Thyroid hormone receptors (TRs) mediate transcriptional responses through a highly conserved DNA-binding domain (DBD). We previously constructed an artificially modified human TRß1 (m-TRß1) via the introduction of a 108-bp exon sequence into the corresponding position of the wild-type human TRß1 (TRß1) DBD. Studies confirmed that m-TRß1 was functional and could inhibit the proliferation of breast cancer MDA-MB-468 cells in vitro. To understand the role of m-TRß1 in liver tumor development, we adopted a gain-of-function approach by stably expressing TRß (m-TRß1 and TRß1) genes in a human hepatocarcinoma cell line, SK-hep1 (without endogenous TRß), and then evaluated the effects of the expressed TRß on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. In the presence of 3,5,3-L-triiodothyronine (T3), the expression of TRß in SK-hep1 cells inhibited cancer cell proliferation and impeded tumor cell migration through the up-regulation of 4-1BB, Caspase-3, and Bak gene expression; down-regulation of Bcl-2 gene expression; and activation of the Caspase-3 protein. TRß expression in SK-hep1 led to less tumor growth in xenograft models. Additionally, the anti-tumor effect of m-TRß1 was stronger than that of TRß1. These data indicate that m-TRß1 can act as a tumor suppressor in hepatocarcinoma and its role was significantly better than that of TRß1.
Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Receptores beta dos Hormônios Tireóideos , Proteínas Supressoras de Tumor/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Receptores beta dos Hormônios Tireóideos/biossíntese , Receptores beta dos Hormônios Tireóideos/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies.
Assuntos
Adenosina Desaminase/administração & dosagem , Doenças Autoimunes/tratamento farmacológico , Fatores Imunológicos/administração & dosagem , Células Th17/efeitos dos fármacos , Uveíte/tratamento farmacológico , Animais , Doenças Autoimunes/imunologia , Células Cultivadas , Proteínas do Olho/imunologia , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Terapia de Alvo Molecular , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteínas de Ligação ao Retinol/imunologia , Células Th17/imunologia , Uveíte/imunologiaRESUMO
BACKGROUND: Cell-penetrating peptides (CPPs) have been widely used as carriers to transport different molecules into living cells, whereas messenger RNAs (mRNAs) have been utilized as target molecules for the prevention and treatment of various diseases. However, the instability of CPPs and mRNAs has limited their application. Bacteriophage PP7 virus-like particles (VLPs) may protect peptides and RNAs from degradation through displaying foreign peptides on their surface and encapsidating RNA linked with the pac site. RESULTS: In this study, the cDNA of the PP7 coat protein single-chain dimer carrying low molecular weight protamine (LMWP) and the cDNA of green fluorescent protein (GFP) were inserted into two multiple cloning sites of pETDuet-1, respectively. PP7 VLPs carrying the LMWP peptide and GFP mRNA were subsequently expressed in Escherichia coli BL21 (DE3) with high yield and thermal stability, and were easily purified. The VLPs were also non-replicative, non-infectious, and non-toxic. Moreover, they penetrated the mouse prostate cancer cells RM-1 after 24 h incubation. Last, PP7 VLPs carrying the LMWP could encapsidate the GFP mRNA, which was translated into mature protein in mammalian cells. CONCLUSIONS: Recombinant PP7 VLPs can be used simultaneously as a targeted delivery vector for both peptides and mRNA due to their abilities to package RNA and display peptides.
Assuntos
Bacteriófagos/metabolismo , Escherichia coli/genética , Neoplasias da Próstata/genética , Protaminas/farmacocinética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Escherichia coli/virologia , Masculino , Camundongos , Peso Molecular , Neoplasias da Próstata/metabolismo , Proteínas Recombinantes/farmacocinética , Transfecção/métodos , VírionRESUMO
We have previously identified a novel Trß isoform (TrßΔ) in the rat, in which a novel exon N (108 bps) was found between exon 3 and exon 4 of TrßΔ, which represents the only difference between TrßΔ and Trß1. In this study, we searched for an elongated Trß2-like subtype with one additional exon N. We successfully isolated the entire mRNA/cDNA of a novel elongated Trß2 isoform via PCR in the rat pituitary gland. The mRNA/cDNA was only 108 bps (exon N) longer than that Trß2, and the extension of the sequence was between exon 3 and 4 of Trß. The whole sequence of this novel Trß isoform has been published in NCBI GenBank (HM043807.1); it is named TRbeta2Delta (Trß2Δ). In adult rat pituitary tissue, quantitative real-time RT-PCR analysis showed that the mRNA levels of Trß2Δ and Trß2 were roughly equal (P > 0.05). We cloned, expressed, and purified the His-Trß2Δ protein [recombinant TRß2Δ (rTRß2Δ)]. SDS-PAGE and western blotting revealed that the molecular weight of rTRß2Δ was 58.2 kDa. Using a radioligand binding assay and an electrophoretic mobility shift assay, rTRß2Δ-bound T3 with high affinity and recognized thyroid hormone response element (TRE) binding sites. Finally, in vitro transfection experiments further confirmed that rTRß2Δ binding T3 significantly promotes the transcription of target genes via the TRE. Here, we have provided evidence suggesting that rTRß2Δ is a novel functional TR isoform.
Assuntos
Hipófise/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , Clonagem Molecular , DNA Complementar/genética , Ligantes , RNA Mensageiro/genética , Ratos , Transcrição Gênica/genética , Transfecção/métodosRESUMO
The incidence of digestive malignancies has increased in recent years, including colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pancreatic cancer. Advanced stages of these cancers are prone to metastasis, which seriously reduce the standard of living of patients and lead to decline in the survival rate of patients. So far there are no good specific drugs to stop this phenomenon. It is very important and urgent to find new biomarkers and therapeutic targets. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is ATP-gated and nonselective ion channel receptor involved in many inflammatory processes and cancer progression. P2X7R is present in many cancer cells and promotes or inhibits cancer development through signal transduction. Studies have presented that P2X7R plays a role in the proliferation and migration of digestive system cancers, such as CRC, HCC and pancreatic cancer. Therefore, P2X7R may serve as a biomarker or therapeutic target for digestive system cancers. This paper describes the structure and function of P2X7R, and mainly reviews the research progress on the role of P2X7R in CRC, HCC and pancreatic cancer.
Assuntos
Carcinoma Hepatocelular , Canais Iônicos de Abertura Ativada por Ligante , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Biomarcadores , Receptores Purinérgicos P2X7 , Trifosfato de AdenosinaRESUMO
Lung cancer is the second malignant tumor in the world and is the most prevalent malignant tumor of the respiratory system. In lung cancer, the P2X7 receptor (P2X7R) is an important purinergic receptor. P2X7R is a class of ionotropic adenosine triphosphate (ATP)-gated receptors, which exists in many kinds of immune tissues and cells and is involved in tumorigenesis and progression. P2X7R is closely related to lung cancer and is expressed at higher levels in lung cancer than in normal lung tissue. P2X7R plays a critical regulatory function in lung cancer invasion and migration through multiple mechanisms of action and affects the proliferation and apoptosis of cancer cells in the lung. Antagonists of P2X7R can block its function, which in turn has a significant inhibitory effect on lung cancer cell development and progression. This paper details a comprehensive overview of the structure and function of P2X7R. It focuses on the impact and treatment potential of P2X7R in lung cancer invasion, migration, proliferation, and apoptosis, providing new ideas and a new basis for clinical lung cancer treatment and prognosis.
RESUMO
Introduction: FLT3 mutations are closely associated with the occurrence of hematological and solid malignancies, especially with acute myeloid leukemia. Currently, several FLT3 inhibitors are in clinical trials, and some have been applied in clinic. However, the safety, efficacy and pharmacodynamics of these FLT3 inhibitors have not been systemically analyzed before. Methods: We searched and reviewed clinical trial reports on the monotherapy of 13 FLT3 inhibitors, including sorafenib, lestaurtinib, midostaurin, gilteritinib, quizartinib, sunitinib, crenolanib, tandutinib, cabozantinib, pexidartinib, pacritinib, famitinib, and TAK-659 in patients with hematological and solid malignancies before May 31, 2023. Results: Our results showed the most common adverse events (AEs) were gastrointestinal adverse reactions, including diarrhea, hand-foot syndrome and nausea, while the most common hematological AEs were febrile neutropenia, anemia, and thrombocytopenia. Based on the published data, the mean overall survival (OS) and the mean progression-free survival (PFS) were 9.639 and 5.905 months, respectively. The incidence of overall response rate (ORR), complete remission (CR), partial response (PR), and stable disease (SD) for all these FLT3 inhibitors was 29.0%, 8.7%, 16.0%, and 42.3%, respectively. The ORRs of FLT3 inhibitors in hematologic malignancies and solid tumors were 40.8% and 18.8%, respectively, indicating FLT3 inhibitors were more effective for hematologic malignancies than for solid tumors. In addition, time to maximum plasma concentration (Tmax) in these FLT3 inhibitors ranged from 0.7-12.0 hours, but the elimination half-life (T1/2) range was highly variable, from 6.8 to 151.8 h. Discussion: FLT3 inhibitors monotherapy has shown significant anti-tumor effect in clinic, and the effectiveness may be further improved through combination medication.
RESUMO
Purinergic ligand-gated ion channel 7 receptor (P2X7 receptor) is an adenosine triphosphate (ATP)-gated ion channel that is widely distributed on the surfaces of immune cells and tissues such as those in the liver, kidney, lung, intestine, and nervous system. Hepatocellular carcinoma (HCC) is one of the most common malignancies with increasing incidence and mortality. Although many treatments for liver cancer have been studied, the prognosis for liver cancer is still very poor. Therefore, new liver cancer treatments are urgently needed. P2X7 receptor activation can secrete proinflammatory factors through the P2X7 receptor-NLRP3 signaling pathway, thereby affecting the progression of liver injury. The P2X7 receptor may be a target for growth inhibition of HCC cells and may affect the invasion and migration of HCC cells through the PI3K/AKT and AMPK signaling pathways. In recent years, P2X7 receptor antagonists or inhibitors have attracted widespread attention as therapeutic targets for hepatocellular carcinoma and liver injury. Therefore, this review covers the basic concepts of the P2X7 receptor and role of the P2X7 receptor in liver cancer and liver injury, providing new potential therapeutic targets for hepatocellular carcinoma and liver injury.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptores Purinérgicos P2X7 , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Detecção Precoce de Câncer , Colo do Útero/metabolismo , Biomarcadores , Apoptose , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêuticoRESUMO
Pancreatic cancer is one of the deadliest types of cancer, with a death rate nearly equal to the incidence. The P2X7 receptor (P2X7R) is a kind of extracellular adenosine triphosphate (ATP)-gated ion channel with special permeability, which exists in most tissues of human body and mediates inflammation-related signaling pathways and immune signal transduction after activation. P2X7R is also present on the surface of several tumor cells and is involved in tumor growth and progression. P2X7R expression in pancreatic cancer has also been identified in recent studies. Activation of P2X7R in pancreatic cancer can support the proliferation of pancreatic stellate cells, participate in protein interactions, and mediate ERK1/2, IL-6/STAT3, hCAP-18/LL-37, PI3K/AKT signaling pathways to promote pancreatic cancer progression. Inhibitors targeting P2X7R can inhibit the development of pancreatic cancer and are expected to be used in clinical therapy. Therefore, P2X7R is promising as a potential therapeutic target for pancreatic cancer. This article reviews the progress of research on P2X7R in pancreatic cancer.
Assuntos
Neoplasias Pancreáticas , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/fisiologia , Neoplasias PancreáticasRESUMO
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine type P2 receptor that is expressed on a variety of immune cells. Recent studies have shown that P2X7R signaling is required to trigger an immune response, and P2X7R antagonist-oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study, we investigated the effect of phasic regulation of the ATP/P2X7R signaling pathway on antigen-presenting cells (APCs) by constructing an experimental autoimmune uveitis (EAU) disease model. Our results demonstrated that APCs isolated from the 1st, 4th, 7th and 11th days of EAU presented antigen function and could stimulate the differentiation of naive T cells. Moreover, after stimulation by ATP and BzATP (a P2X7R agonist), antigen presentation, promoting differentiation and inflammation were enhanced. The regulation of the Th17 cell response was significantly stronger than that of the Th1 cell response. In addition, we verified that oxATP blocked the P2X7R signaling pathway on APCs, attenuated the effect of BzATP, and significantly improved the adoptive transfer EAU induced by antigen-specific T cells cocultured with APCs. Our results demonstrated that at an early stage of EAU, the ATP/P2X7R signaling pathway regulation of APCs was time dependent, and the treatment of EAU could be achieved by intervening in P2X7R function on APCs.
Assuntos
Doenças Autoimunes , Receptores Purinérgicos P2X7 , Transdução de Sinais , Uveíte , Trifosfato de Adenosina/farmacologia , Células Apresentadoras de Antígenos , Receptores Purinérgicos P2X7/metabolismo , Animais , Modelos Animais de DoençasRESUMO
When studying the altered expression of genes associated with cartilage regeneration by quantitative real-time RT-PCR (RT-qPCR), reference genes with highly stable expression during different stages of chondrocyte developmental are necessary to normalize gene expression accurately. Until now, no reports evaluating expression changes of commonly used reference genes in rabbit articular cartilage have been published. In this study, defects were made in rabbit articular cartilage, with or without insulin-like growth factor 1 (IGF-1) treatment, to create different chondrocyte living environments. The stability and intensity of the expressions of the candidate reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S Ribosomal RNA (18S rRNA), cyclophilin (CYP), hypoxanthine phosphoribosyl transferase (HPRT1), and beta-2-microglobulin (B2M) were evaluated. The data were analyzed by geNorm and NormFinder. B2M and 18S rRNA were identified to be suitable reference genes for rabbit cartilage tissues.
Assuntos
Cartilagem/metabolismo , Perfilação da Expressão Gênica , Cicatrização/genética , Ferimentos e Lesões/genética , Animais , Modelos Animais , Coelhos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Prostate cancer is the most common malignancy of the male genitourinary system and is one of the leading causes of male cancer death. The P2X7 receptor is an important member of purine receptor family. It is a gated ion channel with adenosine triphosphate (ATP) as the ligand, which exists in a variety of immune tissues and cells and can be involved in tumorigenesis and tumor progression. Studies have shown that the P2X7 receptor is abnormally expressed in prostate cancer, and is related to the level of prostate-specific antigen, P2X7 receptor may be an early biomarker of prostate cancer. The P2X7 receptor is essential in the occurrence and development of prostate cancer. The P2X7 receptor mainly affects the invasion and metastasis of prostate cancer cells through epithelial mesenchymal transition/invasion-related genes and the PI3K/AKT and ERK1/2 signaling pathways. The P2X7 receptor could be a promising therapeutic target for prostate cancer.