RESUMO
We evaluated the potential for a monoclonal antibody antagonist of the glucagon receptor (Ab-4) to maintain glucose homeostasis in type 1 diabetic rodents. We noted durable and sustained improvements in glycemia which persist long after treatment withdrawal. Ab-4 promoted ß-cell survival and enhanced the recovery of insulin+ islet mass with concomitant increases in circulating insulin and C peptide. In PANIC-ATTAC mice, an inducible model of ß-cell apoptosis which allows for robust assessment of ß-cell regeneration following caspase-8-induced diabetes, Ab-4 drove a 6.7-fold increase in ß-cell mass. Lineage tracing suggests that this restoration of functional insulin-producing cells was at least partially driven by α-cell-to-ß-cell conversion. Following hyperglycemic onset in nonobese diabetic (NOD) mice, Ab-4 treatment promoted improvements in C-peptide levels and insulin+ islet mass was dramatically increased. Lastly, diabetic mice receiving human islet xenografts showed stable improvements in glycemic control and increased human insulin secretion.
Assuntos
Anticorpos Monoclonais/farmacologia , Diabetes Mellitus Experimental/terapia , Células Secretoras de Glucagon/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de Glucagon/antagonistas & inibidores , Animais , Glicemia/metabolismo , Peptídeo C/metabolismo , Linhagem da Célula/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Expressão Gênica , Glucagon/antagonistas & inibidores , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos NOD , Tamanho do Órgão/efeitos dos fármacos , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Resultado do TratamentoRESUMO
The landmark discoveries of leptin and adiponectin firmly established adipose tissue as a sophisticated and highly active endocrine organ, opening a new era of investigating adipose-mediated tissue crosstalk. Both obesity-associated hyperleptinemia and hypoadiponectinemia are important biomarkers to predict cardiovascular outcomes, suggesting a crucial role for adiponectin and leptin in obesity-associated cardiovascular disorders. Normal physiological levels of adiponectin and leptin are indeed essential to maintain proper cardiovascular function. Insufficient adiponectin and leptin signaling results in cardiovascular dysfunction. However, a paradox of high levels of both leptin and adiponectin is emerging in the pathogenesis of cardiovascular disorders. Here, we (1) summarize the recent progress in the field of adiponectin and leptin and its association with cardiovascular disorders, (2) further discuss the underlying mechanisms for this new paradox of leptin and adiponectin action, and (3) explore the possible application of partial leptin reduction, in addition to increasing the adiponectin/leptin ratio as a means to prevent or reverse cardiovascular disorders.
Assuntos
Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Adiponectina/deficiência , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Animais , Fármacos Antiobesidade/uso terapêutico , Cirurgia Bariátrica , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Humanos , Erros Inatos do Metabolismo/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Obesidade/terapia , Transdução de SinaisRESUMO
BACKGROUND: Metabolic remodeling precedes most alterations during cardiac hypertrophic growth under hemodynamic stress. The elevation of glucose utilization has been recognized as a hallmark of metabolic remodeling. However, its role in cardiac hypertrophic growth and heart failure in response to pressure overload remains to be fully illustrated. Here, we aimed to dissect the role of cardiac PKM1 (pyruvate kinase muscle isozyme 1) in glucose metabolic regulation and cardiac response under pressure overload. METHODS: Cardiac-specific deletion of PKM1 was achieved by crossing the floxed PKM1 mouse model with the cardiomyocyte-specific Cre transgenic mouse. PKM1 transgenic mice were generated under the control of tetracycline response elements, and cardiac-specific overexpression of PKM1 was induced by doxycycline administration in adult mice. Pressure overload was triggered by transverse aortic constriction. Primary neonatal rat ventricular myocytes were used to dissect molecular mechanisms. Moreover, metabolomics and nuclear magnetic resonance spectroscopy analyses were conducted to determine cardiac metabolic flux in response to pressure overload. RESULTS: We found that PKM1 expression is reduced in failing human and mouse hearts. It is important to note that cardiomyocyte-specific deletion of PKM1 exacerbates cardiac dysfunction and fibrosis in response to pressure overload. Inducible overexpression of PKM1 in cardiomyocytes protects the heart against transverse aortic constriction-induced cardiomyopathy and heart failure. At the mechanistic level, PKM1 is required for the augmentation of glycolytic flux, mitochondrial respiration, and ATP production under pressure overload. Furthermore, deficiency of PKM1 causes a defect in cardiomyocyte growth and a decrease in pyruvate dehydrogenase complex activity at both in vitro and in vivo levels. CONCLUSIONS: These findings suggest that PKM1 plays an essential role in maintaining a homeostatic response in the heart under hemodynamic stress.
Assuntos
Proteínas de Transporte/genética , Suscetibilidade a Doenças , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana/genética , Miócitos Cardíacos/metabolismo , Hormônios Tireóideos/genética , Remodelação Ventricular/genética , Animais , Biomarcadores , Proteínas de Transporte/metabolismo , Respiração Celular , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática , Expressão Gênica , Glucose/metabolismo , Glicólise , Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da TireoideRESUMO
Dermal fibroblasts are an essential population of skin cells. They are not only responsible for synthesis and remodelling of the extracellular matrix of the dermis, but also communicate with other skin cells via autocrine and paracrine interactions. Skin-associated dermal adipocytes reside below the reticular dermis. Strong lipolysis is observed during the regression of dermal adipocytes. However, the nature of the local intercellular crosstalk in which lipids released by dermal adipocytes affecting the metabolism of adjacent skin fibroblasts has not yet been examined. With the use of a series of novel mouse models that allow us to manipulate adipocytes, we demonstrate that dermal adipocytes can modulate the structure of the dermis through regulating extracellular matrix production in dermal fibroblasts. Fatty acids released by dermal adipocytes are involved in this process. Our observations offer new in vivo insights into the role of dermal adipocyte-derived lipids in influencing metabolism of adjacent local cells in the skin through a paracrine effect in the microenvironment of the dermal adipocyte.
Assuntos
Adipócitos/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Comunicação Parácrina , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Microambiente Celular , Colágeno/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Colágeno Tipo III/genética , Células do Cúmulo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Lipólise , Masculino , Camundongos , Pele/citologiaRESUMO
Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet ß-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet ß-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in ß-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.
Assuntos
Metabolismo dos Carboidratos/fisiologia , Glicerofosfatos/metabolismo , Hepatócitos/enzimologia , Células Secretoras de Insulina/enzimologia , Metabolismo dos Lipídeos/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Hidrólise , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Lactonas/farmacologia , Masculino , Camundongos , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Estado Nutricional , Orlistate , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/genética , Interferência de RNA , Ratos , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/fisiologiaRESUMO
Glucose metabolism promotes insulin secretion in ß-cells via metabolic coupling factors that are incompletely defined. Moreover, chronically elevated glucose causes ß-cell dysfunction, but little is known about how cells handle excess fuels to avoid toxicity. Here we sought to determine which among the candidate pathways and coupling factors best correlates with glucose-stimulated insulin secretion (GSIS), define the fate of glucose in the ß-cell, and identify pathways possibly involved in excess-fuel detoxification. We exposed isolated rat islets for 1 h to increasing glucose concentrations and measured various pathways and metabolites. Glucose oxidation, oxygen consumption, and ATP production correlated well with GSIS and saturated at 16 mm glucose. However, glucose utilization, glycerol release, triglyceride and glycogen contents, free fatty acid (FFA) content and release, and cholesterol and cholesterol esters increased linearly up to 25 mm glucose. Besides being oxidized, glucose was mainly metabolized via glycerol production and release and lipid synthesis (particularly FFA, triglycerides, and cholesterol), whereas glycogen production was comparatively low. Using targeted metabolomics in INS-1(832/13) cells, we found that several metabolites correlated well with GSIS, in particular some Krebs cycle intermediates, malonyl-CoA, and lower ADP levels. Glucose dose-dependently increased the dihydroxyacetone phosphate/glycerol 3-phosphate ratio in INS-1(832/13) cells, indicating a more oxidized state of NAD in the cytosol upon glucose stimulation. Overall, the data support a role for accelerated oxidative mitochondrial metabolism, anaplerosis, and malonyl-CoA/lipid signaling in ß-cell metabolic signaling and suggest that a decrease in ADP levels is important in GSIS. The results also suggest that excess-fuel detoxification pathways in ß-cells possibly comprise glycerol and FFA formation and release extracellularly and the diversion of glucose carbons to triglycerides and cholesterol esters.
Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Graxos/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Ésteres do Colesterol/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Relação Dose-Resposta a Droga , Glucose/metabolismo , Glicerofosfatos/metabolismo , Glicogênio/metabolismo , Masculino , Malonil Coenzima A/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismoRESUMO
Pancreatic ß-cell dysfunction contributes to onset and progression of type 2 diabetes. In this state ß-cells become metabolically inflexible, losing the ability to select between carbohydrates and lipids as substrates for mitochondrial oxidation. These changes lead to ß-cell dedifferentiation. We have proposed that FoxO proteins are activated through deacetylation-dependent nuclear translocation to forestall the progression of these abnormalities. However, how deacetylated FoxO exert their actions remains unclear. To address this question, we analyzed islet function in mice homozygous for knock-in alleles encoding deacetylated FoxO1 (6KR). Islets expressing 6KR mutant FoxO1 have enhanced insulin secretion in vivo and ex vivo and decreased fatty acid oxidation ex vivo Remarkably, the gene expression signature associated with FoxO1 deacetylation differs from wild type by only â¼2% of the >4000 genes regulated in response to re-feeding. But this narrow swath includes key genes required for ß-cell identity, lipid metabolism, and mitochondrial fatty acid and solute transport. The data support the notion that deacetylated FoxO1 protects ß-cell function by limiting mitochondrial lipid utilization and raise the possibility that inhibition of fatty acid oxidation in ß-cells is beneficial to diabetes treatment.
Assuntos
Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Acetilação , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Ácidos Graxos/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , OxirreduçãoRESUMO
Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, α/ß-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.
Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Lipólise/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Graxos/metabolismo , Humanos , Lipase/antagonistas & inibidores , Lipase/metabolismo , Lipogênese/fisiologia , Lipólise/fisiologia , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/metabolismo , Camundongos , Monoacilglicerol Lipases/metabolismo , Esterol Esterase/antagonistas & inibidores , Esterol Esterase/metabolismo , Triglicerídeos/metabolismoRESUMO
AIMS/HYPOTHESIS: To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. METHODS: Atgl flox/flox mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT/+;Atgl flox/flox mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. RESULTS: ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. CONCLUSIONS/INTERPRETATION: ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.
Assuntos
Tecido Adiposo/metabolismo , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tamoxifeno/farmacologia , Espectrometria de Massas em TandemRESUMO
Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam-Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism-related gene expression using ACBP-deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA-CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA allosteric modulator. Using brain slices, cortical, and hypothalamic astrocyte cultures from ACBP KO mice, we demonstrate that ACBP mainly localizes in astrocytes and regulates unsaturated but not saturated long-chain fatty acids (LCFA) metabolism. In addition, ACBP deficiency alters FA metabolism-related genes and results in intracellular FA accumulation while affecting their release. Our results support a novel role for ACBP in brain lipid metabolism. FA, fatty acids; KO, knockout; PL, phospholipids; TAG, triacylglycerol.
Assuntos
Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Hipotálamo/citologia , Metabolismo dos Lipídeos/genética , Acil Coenzima A/metabolismo , Animais , Células Cultivadas , Inibidor da Ligação a Diazepam/genética , Proteínas de Ligação a Ácido Graxo , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos KnockoutRESUMO
Gene therapies provide treatment options for many diseases, but the safe and long-term control of therapeutic transgene expression remains a primary issue for clinical applications. Here, we develop a muscone-induced transgene system packaged into adeno-associated virus (AAV) vectors (AAVMUSE) based on a G protein-coupled murine olfactory receptor (MOR215-1) and a synthetic cAMP-responsive promoter (PCRE). Upon exposure to the trigger, muscone binds to MOR215-1 and activates the cAMP signaling pathway to initiate transgene expression. AAVMUSE enables remote, muscone dose- and exposure-time-dependent control of luciferase expression in the livers or lungs of mice for at least 20 weeks. Moreover, we apply this AAVMUSE to treat two chronic inflammatory diseases: nonalcoholic fatty liver disease (NAFLD) and allergic asthma, showing that inhalation of muscone-after only one injection of AAVMUSE-can achieve long-term controllable expression of therapeutic proteins (ΔhFGF21 or ΔmIL-4). Our odorant-molecule-controlled system can advance gene-based precision therapies for human diseases.
Assuntos
Alprostadil , Cicloparafinas , Camundongos , Humanos , Animais , Alprostadil/metabolismo , Transgenes , Cicloparafinas/metabolismo , Odorantes , Receptores Acoplados a Proteínas G/metabolismo , Dependovirus/genética , Vetores GenéticosRESUMO
The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.
Assuntos
Receptores de Glucagon , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Receptores de Glucagon/metabolismo , Regulação para Baixo , Camundongos Knockout , Rim/metabolismo , Homeostase/fisiologia , LipídeosRESUMO
Partial leptin reduction can induce significant weight loss, while weight loss contributes to partial leptin reduction. The cause-and-effect relationship between leptin reduction and weight loss remains to be further elucidated. Here, we show that FGF21 and the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide rapidly induced a reduction in leptin. This leptin reduction contributed to the beneficial effects of GLP-1R agonism in metabolic health, as transgenically maintaining leptin levels during treatment partially curtailed the beneficial effects seen with these agonists. Moreover, a higher degree of leptin reduction during treatment, induced by including a leptin neutralizing antibody with either FGF21 or liraglutide, synergistically induced greater weight loss and better glucose tolerance in diet-induced obese mice. Furthermore, upon cessation of either liraglutide or FGF21 treatment, the expected immediate weight regain was observed, associated with a rapid increase in circulating leptin levels. Prevention of this leptin surge with leptin neutralizing antibodies slowed down weight gain and preserved better glucose tolerance. Mechanistically, a significant reduction in leptin induced a higher degree of leptin sensitivity in hypothalamic neurons. Our observations support a model that postulates that a reduction of leptin levels is a necessary prerequisite for substantial weight loss, and partial leptin reduction is a viable strategy to treat obesity and its associated insulin resistance.
Assuntos
Leptina , Liraglutida , Animais , Camundongos , Leptina/metabolismo , Liraglutida/farmacologia , Obesidade , Redução de Peso , Glucose/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismoRESUMO
PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.
Assuntos
Adipócitos , Ceramidas , Ceramidas/metabolismo , Adipócitos/metabolismo , Animais , Camundongos , Adipogenia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Tecido Adiposo/metabolismo , Obesidade/metabolismo , HumanosRESUMO
Adipogenin (Adig) is an evolutionarily conserved microprotein and is highly expressed in adipose tissues and testis. Here, we identify Adig as a critical regulator for lipid droplet formation in adipocytes. We determine that Adig interacts directly with seipin, leading to the formation of a rigid complex. We solve the structure of the seipin/Adig complex by Cryo-EM at 2.98Å overall resolution. Surprisingly, seipin can form two unique oligomers, undecamers and dodecamers. Adig selectively binds to the dodecameric seipin complex. We further find that Adig promotes seipin assembly by stabilizing and bridging adjacent seipin subunits. Functionally, Adig plays a key role in generating lipid droplets in adipocytes. In mice, inducible overexpression of Adig in adipocytes substantially increases fat mass, with enlarged lipid droplets. It also elevates thermogenesis during cold exposure. In contrast, inducible adipocyte-specific Adig knockout mice manifest aberrant lipid droplet formation in brown adipose tissues and impaired cold tolerance.
RESUMO
Innate immune activation plays a vital role in the development of Alzheimer's disease (AD) and related dementias (ADRD). Among which, the DNA sensing cyclic GMP-AMP synthase (cGAS)- STING pathway has been implicated in diverse aspects of AD progression. In the current study, we showed that the cGAS-STING signaling was up-regulated in AD and this elevation was mainly contributed by the microglial population other than non-microglial cell types in the brain. By establishing an inducible, microglia-specific cGAS knockout mouse model in 5xFAD background, we found that deleting microglial cGAS at the onset of amyloid-ß (Aß) pathology significantly limited plaque formation, and protected mice from Aß-induced cognitive impairment. Mechanistically, we found cGAS was necessary for plaque-associated microglial enrichment potentially driven by IRF8, and was indispensable for the development of disease-associated microglia (DAM) phenotype. Meanwhile, the loss of microglial cGAS reduced the levels of dystrophic neurites which led to preserved synaptic integrity and neuronal function. Our study provides new insights in understanding the effects of innate immune in AD via a cell-type specific manner, and lays the foundation for potential targeted intervention of the microglial cGAS-STING pathway toward the improvement of AD.
RESUMO
Bile acids serve a vital function in lipid digestion and absorption; however, their accumulation can precipitate liver damage. In our study, we probed the effects of dimethyl sulfoxide (DMSO) on bile acid synthesis and the ensuing liver damage in mice induced by bile acids. Our findings indicate that DMSO efficaciously curbs bile acid synthesis by inhibiting key enzymes involved in the biosynthetic pathway, both in cultured primary hepatocytes and in vivo. Contrarily, we observed that DMSO treatment did not confer protection against bile-acid-induced liver damage in two distinct mouse models: one induced by a 0.1% DDC diet, leading to bile duct obstruction, and another induced by a CDA-HFD, resulting in non-alcoholic steatohepatitis (NASH). Histopathological and biochemical analyses unveiled a comparable extent of liver injury and fibrosis levels in DMSO-treated mice, characterized by similar levels of increase in Col1a1 and Acta2 expression and equivalent total liver collagen levels. These results suggest that, while DMSO can promptly inhibit bile acid synthesis in healthy mice, compensatory mechanisms might rapidly override this effect, negating any protective impact against bile-acid-induced liver damage in mice. Through these findings, our study underscores the need to reconsider treating DMSO as a mere inert solvent and prompts further exploration to identify more effective therapeutic strategies for the prevention and treatment of bile-acid-associated liver diseases.
RESUMO
Lipid droplets (LDs) are dynamic lipid storage organelles that can sense and respond to changes in systemic energy balance. The size and number of LDs are controlled by complex and delicate mechanisms, among which, whether and which SNARE proteins mediate LD fusion, and the mechanisms governing this process remain poorly understood. Here we identified a SNARE complex, syntaxin 18 (STX18)-SNAP23-SEC22B, that is recruited to LDs to mediate LD fusion. STX18 targets LDs with its transmembrane domain spanning the phospholipid monolayer twice. STX18-SNAP23-SEC22B complex drives LD fusion in adiposome lipid mixing and content mixing in vitro assays. CIDEC/FSP27 directly binds STX18, SEC22B, and SNAP23, and promotes the lipid mixing of SNAREs-reconstituted adiposomes by promoting LD clustering. Knockdown of STX18 in mouse liver via AAV resulted in smaller liver and reduced LD size under high-fat diet conditions. All these results demonstrate a critical role of the SNARE complex STX18-SNAP23-SEC22B in LD fusion.
RESUMO
The disease progression of the metabolic syndrome is associated with prolonged hyperlipidemia and insulin resistance, eventually giving rise to impaired insulin secretion, often concomitant with hypoadiponectinemia. As an adipose tissue derived hormone, adiponectin is beneficial for insulin secretion and ß cell health and differentiation. However, the down-stream pathway of adiponectin in the pancreatic islets has not been studied extensively. Here, along with the overall reduction of endocrine pancreatic function in islets from adiponectin KO mice, we examine PPARα and HNF4α as additional down-regulated transcription factors during a prolonged metabolic challenge. To elucidate the function of ß cell-specific PPARα and HNF4α expression, we developed doxycycline inducible pancreatic ß cell-specific PPARα (ß-PPARα) and HNF4α (ß-HNF4α) overexpression mice. ß-PPARα mice exhibited improved protection from lipotoxicity, but elevated ß-oxidative damage in the islets, and also displayed lowered phospholipid levels and impaired glucose-stimulated insulin secretion. ß-HNF4α mice showed a more severe phenotype when compared to ß-PPARα mice, characterized by lower body weight, small islet mass and impaired insulin secretion. RNA-sequencing of the islets of these models highlights overlapping yet unique roles of ß-PPARα and ß-HNF4α. Given that ß-HNF4α potently induces PPARα expression, we define a novel adiponectin-HNF4α-PPARα cascade. We further analyzed downstream genes consistently regulated by this axis. Among them, the islet amyloid polypeptide (IAPP) gene is an important target and accumulates in adiponectin KO mice. We propose a new mechanism of IAPP aggregation in type 2 diabetes through reduced adiponectin action.
Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Camundongos , Adiponectina/genética , Adiponectina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismoRESUMO
Despite their high degree of effectiveness in the management of psychiatric conditions, exposure to antipsychotic drugs, including olanzapine and risperidone, is frequently associated with substantial weight gain and the development of diabetes. Even before weight gain, a rapid rise in circulating leptin concentrations can be observed in most patients taking antipsychotic drugs. To date, the contribution of this hyperleptinemia to weight gain and metabolic deterioration has not been defined. Here, with an established mouse model that recapitulates antipsychotic drug-induced obesity and insulin resistance, we not only confirm that hyperleptinemia occurs before weight gain but also demonstrate that hyperleptinemia contributes directly to the development of obesity and associated metabolic disorders. By suppressing the rise in leptin through the use of a monoclonal leptin-neutralizing antibody, we effectively prevented weight gain, restored glucose tolerance, and preserved adipose tissue and liver function in antipsychotic drug-treated mice. Mechanistically, suppressing excess leptin resolved local tissue and systemic inflammation typically associated with antipsychotic drug treatment. We conclude that hyperleptinemia is a key contributor to antipsychotic drug-associated weight gain and metabolic deterioration. Leptin suppression may be an effective approach to reducing the undesirable side effects of antipsychotic drugs.