RESUMO
Eukaryotic RNA polymerase I (Pol I) products play fundamental roles in ribosomal assembly, protein synthesis, metabolism and cell growth. Abnormal expression of both Pol I transcription-related factors and Pol I products causes a range of diseases, including ribosomopathies and cancers. However, the factors and mechanisms governing Pol I-dependent transcription remain to be elucidated. Here, we report that transcription factor IIB-related factor 1 (BRF1), a subunit of transcription factor IIIB required for RNA polymerase III (Pol III)-mediated transcription, is a nucleolar protein and modulates Pol I-mediated transcription. We showed that BRF1 can be localized to the nucleolus in several human cell types. BRF1 expression correlates positively with Pol I product levels and tumour cell growth in vitro and in vivo. Pol III transcription inhibition assays confirmed that BRF1 modulates Pol I-directed transcription in an independent manner rather than through a Pol III product-to-45S pre-rRNA feedback mode. Mechanistically, BRF1 binds to the Pol I transcription machinery components and can be recruited to the rDNA promoter along with them. Additionally, alteration of BRF1 expression affects the recruitment of Pol I transcription machinery components to the rDNA promoter and the expression of TBP and TAF1A. These findings indicate that BRF1 modulates Pol I-directed transcription by controlling the expression of selective factor 1 subunits. In summary, we identified a novel role of BRF1 in Pol I-directed transcription, suggesting that BRF1 can independently regulate both Pol I- and Pol III-mediated transcription and act as a key coordinator of Pol I and Pol III.
Assuntos
Neoplasias , Fatores Associados à Proteína de Ligação a TATA , Humanos , DNA Ribossômico/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
Deregulation of transcription factor AP2 alpha (TFAP2A) and RNA polymerase III (Pol III) products is associated with tumorigenesis. However, the mechanism underlying this event is not fully understood and the connection between TFAP2A and Pol III-directed transcription has not been investigated. Here, we report that TFAP2A functions as a positive factor in the regulation of Pol III-directed transcription and cell proliferation. We found TFAP2A is also required for the activation of Pol III transcription induced by the silencing of filamin A, a well-known cytoskeletal protein and an inhibitor in Pol III-dependent transcription identified previously. Using a chromatin immunoprecipitation technique, we showed TFAP2A positively modulates the assembly of Pol III transcription machinery factors at Pol III-transcribed gene loci. We found TFAP2A can activate the expression of Pol III transcription-related factors, including BRF1, GTF3C2, and c-MYC. Furthermore, we demonstrate TFAP2A enhances expression of MDM2, a negative regulator of tumor suppressor p53, and also inhibits p53 expression. Finally, we found MDM2 overexpression can rescue the inhibition of Pol III-directed transcription and cell proliferation caused by TFAP2A silencing. In summary, we identified that TFAP2A can activate Pol III-directed transcription by controlling multiple pathways, including general transcription factors, c-MYC and MDM2/p53. The findings from this study provide novel insights into the regulatory mechanisms of Pol III-dependent transcription and cancer cell proliferation.
Assuntos
Neoplasias , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição AP-2 , Humanos , Proliferação de Células , RNA Polimerase III/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismoRESUMO
Ti3C2Tx (MXene) is widely acknowledged as an excellent substrate for constructing heterogeneous structures with transition metal chalcogenides (TMCs) for boosting the electrochemical performance of lithium-ion storage. However, conventional synthesis strategies inevitably lead to poor electrochemical charge transfer due to Ti3C2Tx-derived TiO2 at the heterogeneous interface between Ti3C2Tx and TMCs. Here, an innovative in situ selenization strategy is proposed to replace the originally generated TiO2 on Ti3C2Tx with metallic TiSe2 interphase, clearing the bottleneck of slow charge transfer barrier caused by MXene oxidation. The construction of bimetallic selenide formed by CoSe2 and TiSe2 generates intrinsic electric fields to guide the fast ion diffusion kinetics in a heterogeneous interface. Additionally, the CoSe2/TiSe2/Ti3C2Tx heterogeneous structure with enhanced structural stability and improved rate performance is confirmed by both experiments and theoretical calculations. The engineered heterogeneous structure exhibits an ultra-high pseudocapacitance contribution (73.1% at 0.1 mV s-1), rendering it well-suited to offset the kinetics differences between double-layer materials. The assembled lithium-ion capacitor based on CoSe2/TiSe2/Ti3C2Tx possesses a high energy density and an ultralong life span (89.5% after 10 000 times at 2 A g-1). This devised strategy provides a feasible solution for utilizing the performance advantages of MXene substrates in lithium storage with ultrafast charge transfer kinetics.
RESUMO
Cr (VI) is extremely harmful to both the environment and human health, and it can linger in the environment for a very long period. In this research, the Leersia hexandra Swartz constructed wetland-microbial fuel cell (CW-MFC) system was constructed to purify Cr (VI) wastewater. By comparing with the constructed wetland (CW) system, the system electricity generation, pollutants removal, Cr enrichment, and morphological transformation of the system were discussed. The results demonstrated that the L. hexandra CW-MFC system promoted removal of pollutants and production of electricity of the system. The maximum voltage of the system was 499â¯mV, the COD and Cr (VI) removal efficiency was 93.73% and 97.00%. At the same time, it enhanced the substrate and L. hexandra ability to absorb Cr and change it morphologically transformation. Additionally, the results of XPS and XANES showed that the majority of the Cr in the L. hexandra and substrate was present as Cr (III). In the L. hexandra CW-MFC system, Geobacter also functioned as the primary metal catabolic reducing and electrogenic bacteria. As a result, L. hexandra CW-MFC system possesses the added benefit of removing Cr (VI) while producing energy compared to the traditional CW system.
Assuntos
Fontes de Energia Bioelétrica , Cromo , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Hydrocharitaceae , Geobacter/metabolismo , EletricidadeRESUMO
Melasma is a common acquired skin pigmentation disorder. The treatment is urgent but challenging. Ablative fractional laser (AFL) can improve pigmentation, but the efficacy and potential side effects are still debatable. This study aimed to evaluate the efficacy and safety of ablative fractional lasers in the treatment of melasma. A comprehensive systematic search of literature published before June 20, 2023, was conducted on online databases, including PubMed, Embase, Cochrane Library, and Web of Science. The data obtained were analyzed using Review Manager 5.4 software. Fourteen randomized controlled trials, comprising 527 patients, were included. Compared to the drug alone, the combination of AFL and the drug showed improved therapeutic efficacy in the melasma area and severity index (MASI) (MD = 1.54, 95% CI [0.16, 2.92], P = 0.03) and physician global assessment (RR = 1.61, 95% CI [1.08, 2.41], P = 0.02). However, no statistically significant results were found in patient self-assessment (RR = 1.56, 95% CI [0.88, 2.76], P = 0.12). As an individual therapy, AFL is not superior to any other lasers in terms of MASI (MD = 2.66, 95% CI [-1.32, 6.64], P = 0.19) or melanin index (MD = -7.06, 95% CI [-45.09, 30.97], P = 0.72). Common adverse events included transient erythema, burning, edema, and superficial crusting. Only a few patients experienced reversible post-inflammatory hyperpigmentation, herpes labialis, and acne breakouts. These results support the application of AFL as a viable treatment option for melasma, particularly in refractory and severe cases. Rational parameterization or combination therapy may lead to significant clinical improvement with fewer complications.
Assuntos
Terapia com Luz de Baixa Intensidade , Melanose , Melanose/radioterapia , Melanose/terapia , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Terapia com Luz de Baixa Intensidade/efeitos adversos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Terapia a Laser/métodos , Terapia a Laser/efeitos adversosRESUMO
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Assuntos
Filaminas , Fator de Transcrição GATA4 , Proteínas Quinases , RNA Polimerase III , Proliferação de Células , Filaminas/genética , Filaminas/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Proteínas Quinases/metabolismo , RNA Polimerase III/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
BACKGROUND: Deregulation of either RNA polymerase I (Pol I)-directed transcription or expression of signal transducer and activator of transcription 3 (STAT3) correlates closely with tumorigenesis. However, the connection between STAT3 and Pol I-directed transcription hasn't been investigated. METHODS: The role of STAT3 in Pol I-directed transcription was determined using combined techniques. The regulation of tumor cell growth mediated by STAT3 and Pol I products was analyzed in vitro and in vivo. RNAseq, ChIP assays and rescue assays were used to uncover the mechanism of Pol I transcription mediated by STAT3. RESULTS: STAT3 expression positively correlates with Pol I product levels and cancer cell growth. The inhibition of STAT3 or Pol I products suppresses cell growth. Mechanistically, STAT3 activates Pol I-directed transcription by enhancing the recruitment of the Pol I transcription machinery to the rDNA promoter. STAT3 directly activates Rpa34 gene transcription by binding to the RPA34 promoter, which enhances the occupancies of the Pol II transcription machinery factors at this promoter. Cancer patients with RPA34 high expression lead to poor survival probability and short survival time. CONCLUSION: STAT3 potentiates Pol I-dependent transcription and tumor cell growth by activating RPA34 in vitro and in vivo.
Assuntos
RNA Polimerase I , Fator de Transcrição STAT3 , Transcrição Gênica , Humanos , Regiões Promotoras Genéticas , RNA Polimerase I/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição STAT3/metabolismoRESUMO
BACKGROUND: Chimeric antigen receptor (CAR) T cells and immune checkpoint blockades (ICBs) have made remarkable breakthroughs in cancer treatment, but the efficacy is still limited for solid tumors due to tumor antigen heterogeneity and the tumor immune microenvironment. The restrained treatment efficacy prompted us to seek new potential therapeutic methods. METHODS: In this study, we conducted a small molecule compound library screen in a human BC cell line to identify whether certain drugs contribute to CAR T cell killing. Signaling pathways of tumor cells and T cells affected by the screened drugs were predicted via RNA sequencing. Among them, the antitumor activities of JK184 in combination with CAR T cells or ICBs were evaluated in vitro and in vivo. RESULTS: We selected three small molecule drugs from a compound library, among which JK184 directly induces tumor cell apoptosis by inhibiting the Hedgehog signaling pathway, modulates B7-H3 CAR T cells to an effector memory phenotype, and promotes B7-H3 CAR T cells cytokine secretion in vitro. In addition, our data suggested that JK184 exerts antitumor activities and strongly synergizes with B7-H3 CAR T cells or ICBs in vivo. Mechanistically, JK184 enhances B7-H3 CAR T cells infiltrating in xenograft mouse models. Moreover, JK184 combined with ICB markedly reshaped the tumor immune microenvironment by increasing effector T cells infiltration and inflammation cytokine secretion, inhibiting the recruitment of MDSCs and the transition of M2-type macrophages in an immunocompetent mouse model. CONCLUSION: These data show that JK184 may be a potential adjutant in combination with CAR T cells or ICB therapy.
Assuntos
Proteínas Hedgehog , Neoplasias , Humanos , Animais , Camundongos , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Imunoterapia , Citocinas , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Microambiente Tumoral , Neoplasias/terapiaRESUMO
Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.
Assuntos
Células-Tronco Neurais , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Paxilina/metabolismo , Metaloproteinase 2 da Matriz , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Processamento U2AF/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a RNA/metabolismo , Neurogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
To explore the prevalence and severity of COVID-19 and the mental health during the Omicron pandemic in patients with chronic myeloid leukemia (CML), a cross-sectional survey from 2609 respondents with CML was performed. A total of 1725 (66%) reported that they had COVID-19 during this period. Among them, 1621 (94%) were mild; 97 (6%), moderate; 7 (0.4%), severe; and 0, critical or death. Four hundred three (15%), 199 (8%), and 532 (20%) had moderate to severe depression, anxiety, and distress, respectively. Eight hundred ninety (34%), 667 (26%), and 573 (22%), avoidance, intrusion, and hyper-arousal, respectively. In multivariate analyses, longer TKI-therapy duration was significantly associated with a lower prevalence of COVID-19 (odds ratio [OR] = 0.98; 95% confidence interval [CI], 0.95, 0.99; p = 0.043); however, living in urban areas (OR = 1.6 [1.3, 2.0]; p < 0.001) and having family members with COVID-19 (OR = 18.6 [15.1, 22.8]; p < 0.001), a higher prevalence of COVID-19. Increasing age (OR = 1.2 [1.1, 1.4]; p = 0.009), comorbidity(ies) (OR = 1.7 [1.1, 2.7]; p = 0.010), and multi-TKI-resistant patients receiving 3rd-generation TKIs or investigational agents (OR = 2.2 [1.2, 4.2]; p = 0.010) were significantly associated with moderate or severe COVID-19. Female, comorbidity(ies), unvaccinated, and moderate or severe COVID-19 were significantly associated with almost all adverse mental health consequences; increasing age or forced TKI dose reduction because of various restriction during the pandemic, moderate to severe distress, avoidance, or intrusion; however, mild COVID-19, none or mild anxiety, distress, avoidance, or intrusion. In conclusion, shorter TKI-therapy duration, increasing age, comorbidity(ies), or multi-TKI-resistant patients receiving 3rd-generation TKIs or investigational agents had a higher prevalence of COVID-19 or higher risk of moderate or severe disease in patients with CML; increasing age, female, comorbidity(ies), forced TKI dose reduction due to the pandemic, moderate or severe COVID-19, unvaccinated, a higher likelihood of worse mental health.
Assuntos
COVID-19 , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Feminino , COVID-19/epidemiologia , COVID-19/complicações , Estudos Transversais , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/complicações , Ansiedade/epidemiologiaRESUMO
Objective: To evaluate the value and compliance rate of voiding vesicoureteral urosonography in pediatric vesicoureteral reflux (VUR). Methods: This is a retrospective study. A total of 80 children with high-risk VUR admitted to Children's Hospital affiliated to Capital Medical University from December 2018 to December 2020 were selected. All patients underwent voiding urosonography (VUS) and fluoroscopic voiding cystourethrography (VCUG). The sensitivity and compliance of voiding vesicoureteral urosonography were compared, and its application value was evaluated. Results: A total of 160 PUUs were examined, and all cases were normal. Among them, 56 PUUs had reflux (35.00%, 56/160), 46 PUUs had reflux under both examination methods (28.75%, 46/160), and 10 PUUs were only detected under VUS (6.25%, 10/160). Thirty-four cases of VUR (42.50%, 34/80) were diagnosed by VUS, among which 15 cases were bilateral reflux and 4 cases were unilateral reflux. Twenty-five cases (35.00%, 25/80) were diagnosed by VCUG, among which 10 cases were bilateral regurgitation and five cases were unilateral regurgitation. No significant difference was observed in the detection rate of reflux between the two methods (P=0.432). A total of 146 PUUs were found to be consistent between the two methods (91.25%, 160), including 2 Grade-I reflux, 6 Grade-II reflux, 14 Grade-III reflux, 12 Grade-IV reflux, eight Grade-V reflux, and 104 without reflux, demonstrating SATISFACTORY consistency between the two groups (Kappa=0.885). Conclusion: Voiding vesicoureteral urosonography has a high coincidence rate in the detection of vesicoureteral reflux in children.
RESUMO
The occurrence of microplastics (MPs) has been widely reported in human foodstuffs, and their potential negative effects on human health have been brought into focus. Processed foods are more susceptible to MPs as contamination can be introduced during processing and packaging. However, the risk posed by MPs in processed foods remained unclear. This work aims to critically review the available data for MPs in 11 types of possessed foods and to conduct a preliminary risk assessment of MPs in processed foods. For a comprehensive evaluation, three indicators were selected and determined, namely chemical risk, pollution load, and estimated daily intake (EDI). Our results suggest that nori has the highest chemical risk, followed by canned fish, beverages, table salt, and other food items. In the case of pollution load, nori and milk fall into the risk category of â £ and â ¢ respectively. Table salts, bottled water, and sugar exhibited lower MPs pollution load (risk category of â ¡), whereas the pollution loads of other foods were calculated to be category â . Moreover, a correlation between the pollution load of sea salts and MPs pollution level in ambient seawater was found. Regarding EDI of MPs from different processed foods, MPs intakes through bottled water (14.3 ± 3.4 n kg-1 d-1) and milk (6.6 ± 2.4 n kg-1 d-1) are significantly higher than that of the other foods (< 1 n kg-1 d-1). The probabilistic estimation of MPs daily intake indicated that children (19.7 n kg-1 d-1) are at a higher health risk than adults (female: 17.6 n kg-1 d-1, male: 12.6 n kg-1 d-1). Nevertheless, the exposure dose used in toxicological studies was about 10 times higher than the MPs intake via processed foods. Therefore, we argued that MPs in processed foods only carry limited risk. Overall, this study would provide the basis for risk management of MPs in processed food products.
Assuntos
Água Potável , Porphyra , Humanos , Feminino , Masculino , Adulto , Criança , Animais , Microplásticos , Plásticos , Polímeros , Sais , Medição de Risco , Leite , Verduras , Cloreto de Sódio na DietaRESUMO
BACKGROUND: Chronic kidney disease (CKD) is a global public health problem. With the deterioration of renal function, a certain proportion of CKD patients enter the uremic stage, and secondary hyperparathyroidism (SHPT) becomes a challenge. For refractory hyperparathyroidism, parathyroidectomy (PTX) plays a key role in reducing mortality and improving prognosis. Nevertheless, no consensus has been reached on the optimal surgical method. We aimed to provide evidence for the effectiveness of surgical treatment by summarizing the experience from our center. METHODS: Clinical data from 1500 patients undergoing parathyroidectomy were recorded, which included 1419 patients in a total parathyroidectomy without autotransplantation (tPTX) group, 54 patients in a total parathyroidectomy plus autotransplantation (tPTX + AT) group, and 27 patients in the other group. Perioperative basic data, intact parathyroid hormone (i-PTH) levels, serum calcium levels, serum phosphorus levels, pathological reports, coexisting thyroid diseases, short-term outcomes and complications were analyzed. Moreover, postoperative complications were compared between the tPTX and tPTX + AT groups. RESULTS: Parathyroid hormone, serum calcium and phosphorus levels decreased significantly post-surgery. Two patients died during the perioperative period. As the two most common complications, the incidences of severe hypocalcemia and hyperkalemia were 36.20% (543 cases) and 24.60% (369 cases), respectively. Pre-iPTH levels (OR = 1.001, 95% CI: 1.001-1.001, p < 0.01), serum alkaline phosphatase (ALP) levels (OR = 1.002, 95% CI: 1.001-1.002, p < 0.01) and the mass of excised parathyroid gland (OR = 3.06, 95% CI: 1.24-7.55, p = 0.02) were positively associated with postoperative severe hypocalcemia, while age and serum calcium were negatively associated with it. Pathological reports of resected parathyroid and thyroid glands indicated that 96.49% had parathyroid nodular hyperplasia, 13.45% had thyroid nodular hyperplasia, and 4.08% had thyroid papillary carcinoma. CONCLUSIONS: Parathyroidectomy is a safe and effective treatment for refractory secondary hyperparathyroidism. Severe hypocalcemia is the main complication, and coexistent thyroid diseases should never be neglected.
Assuntos
Hiperpotassemia/etiologia , Hiperparatireoidismo Secundário/terapia , Hipocalcemia/etiologia , Paratireoidectomia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Diálise Renal/efeitos adversos , Adulto , Cálcio/metabolismo , China/epidemiologia , Feminino , Humanos , Hiperpotassemia/epidemiologia , Hiperpotassemia/metabolismo , Hipocalcemia/epidemiologia , Hipocalcemia/metabolismo , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Hormônio Paratireóideo/metabolismo , Fósforo/metabolismo , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/metabolismo , Insuficiência Renal Crônica/terapia , Estudos RetrospectivosRESUMO
RNA polymerase III (Pol III) products play essential roles in ribosome assembly, protein synthesis, and cell survival. Deregulation of Pol-III-directed transcription is closely associated with tumorigenesis. However, the regulatory pathways or factors controlling Pol-III-directed transcription remain to be investigated. In this study, we identified a novel role of EGR1 in Pol-III-directed transcription. We found that Filamin A (FLNA) silencing stimulated EGR1 expression at both RNA and protein levels. EGR1 expression positively correlated with Pol III product levels and cell proliferation activity. Mechanistically, EGR1 downregulation dampened the occupancies of Pol III transcription machinery factors at the loci of Pol III target genes. Alteration of EGR1 expression did not affect the expression of p53, c-MYC, and Pol III general transcription factors. Instead, EGR1 activated RhoA expression and inhibited PTEN expression in several transformed cell lines. We found that PTEN silencing, rather than RhoA overexpression, could reverse the inhibition of Pol-III-dependent transcription and cell proliferation caused by EGR1 downregulation. EGR1 could positively regulate AKT phosphorylation levels and is required for the inhibition of Pol-III-directed transcription mediated by FLNA. The findings from this study indicate that EGR1 can promote Pol-III-directed transcription and cell proliferation by controlling the PTEN/AKT signalling pathway.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Transcrição Gênica , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Polimerase III/genética , Transdução de Sinais , Fatores de Transcrição/genéticaRESUMO
Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III-mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box-binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III-directed transcription and shed light on how Sp1 regulates cancer cell proliferation.
Assuntos
RNA Polimerase III/metabolismo , Fator de Transcrição Sp1/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores de Transcrição TFIII/metabolismo , Sítios de Ligação , Linhagem Celular , Proliferação de Células , Proteína p300 Associada a E1A/metabolismo , Filaminas/antagonistas & inibidores , Filaminas/genética , Filaminas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Interferência de RNA , RNA Polimerase III/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/genética , Fatores Associados à Proteína de Ligação a TATA/antagonistas & inibidores , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição TFIII/antagonistas & inibidores , Fatores de Transcrição TFIII/genética , Transcrição Gênica , Regulação para CimaRESUMO
Surface-enhanced Raman scattering (SERS) based on 2D semiconductors has been rapidly developed due to their chemical stability and molecule-specific SERS activity. High signal reproducibility is urgently required towards practical SERS applications. 2D gallium nitride (GaN) with highly polar Ga-N bonds enables strong dipole-dipole interactions with the probe molecules, and abundant DOS (density of states) near its Fermi level increases the intermolecular charge transfer probability, making it a suitable SERS substrate. Herein, 2D micrometer-sized GaN crystals are demonstrated to be sensitive SERS platforms with excellent signal reproducibility and stability. Strong dipole-dipole interaction between the dye molecule and 2D GaN enhances the molecular polarizability. Furthermore, 2D GaN benefits its SERS enhancement by the combination of increased DOS and more efficient charge transfer resonances when compared with its bulk counterpart.
Assuntos
Semicondutores , Análise Espectral Raman , Gálio , Reprodutibilidade dos TestesRESUMO
In response to the current demand for the remote monitoring of older people living alone, a non-contact human vital signs monitoring system based on millimeter wave radar has gradually become the object of research. This paper mainly carried out research regarding the detection method to obtain human breathing and heartbeat signals using a frequency modulated continuous wave system. We completed a portable millimeter-wave radar module for wireless communication. The radar module was a small size and had a WIFI communication interface, so we only needed to provide a power cord for the radar module. The breathing and heartbeat signals were detected and separated by FIR digital filter and the wavelet transform method. By building a cloud computing framework, we realized remote and senseless monitoring of the vital signs for older people living alone. Experiments were also carried out to compare the performance difference between the system and the common contact detection system. The experimental results showed that the life parameter detection system based on the millimeter wave sensor has strong real-time performance and accuracy.
Assuntos
Radar , Processamento de Sinais Assistido por Computador , Idoso , Algoritmos , Comunicação , Frequência Cardíaca , Ambiente Domiciliar , HumanosRESUMO
2D intrinsic ferromagnetic materials are highly anticipated in spintronic devices due to their coveted 2D limited magnetism. However, 2D non-layered intrinsic ferromagnets have received sporadic attention, which is largely attributed to the fact that their synthesis is still a great challenge. Significantly, manganese phosphide (MnP) is a promising non-layered intrinsic ferromagnet with excellent properties. Herein, high-quality 2D MnP single crystals formed over liquid metal tin (Sn) is demonstrated through a facile chemical vapor deposition technique. The introduction of liquid metal Sn provides a fertile ground for the growth of 2D MnP single crystals. Interestingly, 2D MnP single crystals maintain their intrinsic ferromagnetism and exhibit a Curie temperature above room temperature. The research enriches the diversity of 2D intrinsic ferromagnetic materials, opening up opportunities for further exploration of their unique properties and rich applications.
RESUMO
Graft-versus-host disease (GVHD) remains a major complication following allogeneic haematopoietic stem cell transplantation (allo-HSCT) leading to high transplant-related mortality. Natural killer (NK) cells have been found to mitigate GVHD without attenuating the graft-versus-tumour (GVT) activity in the murine model of haematopoietic stem cell transplantation. Sphingosine-1-phosphate receptor 5 (S1PR5) is a very important chemokine receptor on NK cells that governs NK cell distribution in vivo and trafficking at lesion sites. Our preliminary studies showed that the incidence of GVHD was negatively correlated with S1PR5 expression in the NK cells of patients after allo-HSCT. In the present study, we found that S1PR5 deficiency in murine NK cells blocked the migration of NK cells from the bone marrow to the GVHD target organs and attenuated the inhibitory effects on the alloreactive T cells, especially CD3+ CD8+ T cells, which may be the reason why the loss of S1PR5 in NK cells could aggravate GVHD in recipient mice. Furthermore, we also demonstrated that the absence of S1PR5 expression in NK cells did not interfere with the antitumour effects of NK cells and T cells in vivo. Taken together, our data indicate that S1PR5 plays an essential role in balancing GVHD and GVT activity.
Assuntos
Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Tumor , Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/genética , Transplante HomólogoRESUMO
BACKGROUND: The medical imaging to differentiate World Health Organization (WHO) grade II (ODG2) from III (ODG3) oligodendrogliomas still remains a challenge. We investigated whether combination of machine leaning with radiomics from conventional T1 contrast-enhanced (T1 CE) and fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) offered superior efficacy. METHODS: Thirty-six patients with histologically confirmed ODGs underwent T1 CE and 33 of them underwent FLAIR MR examination before any intervention from January 2015 to July 2017 were retrospectively recruited in the current study. The volume of interest (VOI) covering the whole tumor enhancement were manually drawn on the T1 CE and FLAIR slice by slice using ITK-SNAP and a total of 1072 features were extracted from the VOI using 3-D slicer software. Random forest (RF) algorithm was applied to differentiate ODG2 from ODG3 and the efficacy was tested with 5-fold cross validation. The diagnostic efficacy of radiomics-based machine learning and radiologist's assessment were also compared. RESULTS: Nineteen ODG2 and 17 ODG3 were included in this study and ODG3 tended to present with prominent necrosis and nodular/ring-like enhancement (P < 0.05). The AUC, ACC, sensitivity, and specificity of radiomics were 0.798, 0.735, 0.672, 0.789 for T1 CE, 0.774, 0.689, 0.700, 0.683 for FLAIR, as well as 0.861, 0.781, 0.778, 0.783 for the combination, respectively. The AUCs of radiologists 1, 2 and 3 were 0.700, 0.687, and 0.714, respectively. The efficacy of machine learning based on radiomics was superior to the radiologists' assessment. CONCLUSIONS: Machine-learning based on radiomics of T1 CE and FLAIR offered superior efficacy to that of radiologists in differentiating ODG2 from ODG3.