Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 864
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(5): 3114-3124, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38113330

RESUMO

Covalent organic frameworks (COFs) present an ideal platform for ion transport owing to their tunable and ordered nanochannels at the single-digit scale. However, achieving superior COF-based electrolytes remains challenging because of the mismatch between the intricate synthesis processes of COFs and the battery preparation environment, which makes it difficult to build continuous ion channels and low-impedance electrochemical interfaces for devices. Here, we present an in situ gelation method to produce COF gel electrolytes (CGEs) within liquid carbonate electrolyte, integrating COF synthesis with their applicability in batteries. This method leads to long-range interconnected and highly crystalline skeletons of COFs from a robust precoordination structure between lithium salts of liquid electrolyte and building blocks. By incorporating the lithium affinity groups in the COFs, the developed CGEs show a remarkable 3-fold enhancement in ionic conductivity, reaching up to 10.5 mS cm-1 compared to the corresponding liquid carbonate electrolytes. Furthermore, the CGEs exhibit a low activation energy of 0.068 eV, ensuring efficient ion transport, while demonstrating dendrite-free lithium deposition even after prolonged testing periods exceeding 1800 h. These CGEs exhibit excellent rate performance (reversible capacity up to 101 mAh g-1 at a current density of 3C, 1C = 170 mAh g-1) in Li-LiFePO4 coin cells and reversible cycling under extreme conditions (reversible capacity up to 158 mAh g-1 under folding state at 0.1C) in pouch cells. Importantly, our novel methodology extends beyond lithium-ion systems, as it can also be applied to the synthesis of CGEs utilizing potassium, magnesium, zinc, sodium, and calcium ions.

2.
Cancer Sci ; 115(7): 2444-2460, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613253

RESUMO

Peripheral T-cell lymphoma (PTCL) is a highly aggressive type of non-Hodgkin's lymphoma with a poor prognosis. Pyroptosis is a newly discovered procedural cell death mode, which has been implicated to occur in both tumor cells and immune cells. However, the occurrence and effect of pyroptosis on PTCL remain unclear. Here, we found that pyroptosis occurred in interstitial macrophages of PTCL rather than in tumor cells. In clinical specimens, macrophage pyroptosis was associated with a poor prognosis of PTCL. In vitro experiments and gene sequencing results showed that pyroptotic macrophages could upregulate the expression of TLR4 through secreting inflammatory cytokines IL-18. Upregulated TLR4 activated its downstream NF-κB anti-apoptotic signaling pathway, thus leading to malignant proliferation and chemotherapy resistance of tumor cells. Moreover, the expression of factors such as XIAP in the NF-κB anti-apoptotic pathway was downregulated after the knockdown of TLR4, and the malignant promotion effect of pyroptotic macrophages on PTCL cells was also reversed. Our findings revealed the mechanism of pyroptotic macrophages promoting the malignant biological behavior of PTCL and elucidated the key role of TLR4 in this process. In-depth analysis of this mechanism will contribute to understanding the regulatory effect of PTCL by the tumor microenvironment and providing new ideas for the clinical treatment of PTCL.


Assuntos
Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Linfoma de Células T Periférico , Macrófagos , Piroptose , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Piroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/patologia , Linfoma de Células T Periférico/genética , Masculino , NF-kappa B/metabolismo , Feminino , Animais , Camundongos , Prognóstico , Pessoa de Meia-Idade , Interleucina-18/metabolismo , Interleucina-18/genética , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica
3.
New Phytol ; 243(4): 1455-1471, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874377

RESUMO

Wood is resulted from the radial growth paced by the division and differentiation of vascular cambium cells in woody plants, and phytohormones play important roles in cambium activity. Here, we identified that PagJAZ5, a key negative regulator of jasmonate (JA) signaling, plays important roles in enhancing cambium cell division and differentiation by mediating cytokinin signaling in poplar 84K (Populus alba × Populus glandulosa). PagJAZ5 is preferentially expressed in developing phloem and cambium, weakly in developing xylem cells. Overexpression (OE) of PagJAZ5m (insensitive to JA) increased cambium activity and xylem differentiation, while jaz mutants showed opposite results. Transcriptome analyses revealed that cytokinin oxidase/dehydrogenase (CKXs) and type-A response regulators (RRs) were downregulated in PagJAZ5m OE plants. The bioactive cytokinins were significantly increased in PagJAZ5m overexpressing plants and decreased in jaz5 mutants, compared with that in 84K plants. The PagJAZ5 directly interact with PagMYC2a/b and PagWOX4b. Further, we found that the PagRR5 is regulated by PagMYC2a and PagWOX4b and involved in the regulation of xylem development. Our results showed that PagJAZ5 can increase cambium activity and promote xylem differentiation through modulating cytokinin level and type-A RR during wood formation in poplar.


Assuntos
Câmbio , Ciclopentanos , Citocininas , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas , Populus , Transdução de Sinais , Xilema , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Diferenciação Celular
4.
Cell Mol Neurobiol ; 44(1): 50, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856921

RESUMO

In recent years, spatial transcriptomics (ST) research has become a popular field of study and has shown great potential in medicine. However, there are few bibliometric analyses in this field. Thus, in this study, we aimed to find and analyze the frontiers and trends of this medical research field based on the available literature. A computerized search was applied to the WoSCC (Web of Science Core Collection) Database for literature published from 2006 to 2023. Complete records of all literature and cited references were extracted and screened. The bibliometric analysis and visualization were performed using CiteSpace, VOSviewer, Bibliometrix R Package software, and Scimago Graphica. A total of 1467 papers and reviews were included. The analysis revealed that the ST publication and citation results have shown a rapid upward trend over the last 3 years. Nature Communications and Nature were the most productive and most co-cited journals, respectively. In the comprehensive global collaborative network, the United States is the country with the most organizations and publications, followed closely by China and the United Kingdom. The author Joakim Lundeberg published the most cited paper, while Patrik L. Ståhl ranked first among co-cited authors. The hot topics in ST are tissue recognition, cancer, heterogeneity, immunotherapy, differentiation, and models. ST technologies have greatly contributed to in-depth research in medical fields such as oncology and neuroscience, opening up new possibilities for the diagnosis and treatment of diseases. Moreover, artificial intelligence and big data drive additional development in ST fields.


Assuntos
Bibliometria , Transcriptoma , Humanos , Transcriptoma/genética , Publicações , Animais
5.
Cell Biol Int ; 48(4): 496-509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225685

RESUMO

Tamoxifen (TAM) resistance poses a significant clinical challenge in human breast cancer and exhibits high heterogeneity among different patients. Rg3, an original ginsenoside known to inhibit tumor growth, has shown potential for enhancing TAM sensitivity in breast cancer cells. However, the specific role and underlying mechanisms of Rg3 in this context remain unclear. Aerobic glycolysis, a metabolic process, has been implicated in chemotherapeutic resistance. In this study, we demonstrate that elevated glycolysis plays a central role in TAM resistance and can be effectively targeted and overcome by Rg3. Mechanistically, we observed upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key mediator of glycolysis, in TAM-resistant MCF-7/TamR and T-47D/TamR cells. Crucially, PFKFB3 is indispensable for the synergistic effect of TAM and Rg3 combination therapy, which suppresses cell proliferation and glycolysis in MCF-7/TamR and T-47D/TamR cells, both in vitro and in vivo. Moreover, overexpression of PFKFB3 in MCF-7 cells mimicked the TAM resistance phenotype. Importantly, combination treatment significantly reduced TAM-resistant MCF-7 cell proliferation in an in vivo model. In conclusion, this study highlights the contribution of Rg3 in enhancing the therapeutic efficacy of TAM in breast cancer, and suggests that targeting TAM-resistant PFKFB3 overexpression may represent a promising strategy to improve the response to combination therapy in breast cancer.


Assuntos
Neoplasias da Mama , Ginsenosídeos , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/patologia , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células MCF-7 , Glicólise , Regulação Neoplásica da Expressão Gênica
6.
Acta Pharmacol Sin ; 45(6): 1287-1304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360930

RESUMO

HER2-positive (HER2+) metastatic breast cancer (mBC) is highly aggressive and a major threat to human health. Despite the significant improvement in patients' prognosis given the drug development efforts during the past several decades, many clinical questions still remain to be addressed such as efficacy when combining different therapeutic modalities, best treatment sequences, interindividual variability as well as resistance and potential coping strategies. To better answer these questions, we developed a mechanistic quantitative systems pharmacology model of the pathophysiology of HER2+ mBC that was extensively calibrated and validated against multiscale data to quantitatively predict and characterize the signal transduction and preclinical tumor growth kinetics under different therapeutic interventions. Focusing on the second-line treatment for HER2+ mBC, e.g., antibody-drug conjugates (ADC), small molecule inhibitors/TKI and chemotherapy, the model accurately predicted the efficacy of various drug combinations and dosing regimens at the in vitro and in vivo levels. Sensitivity analyses and subsequent heterogeneous phenotype simulations revealed important insights into the design of new drug combinations to effectively overcome various resistance scenarios in HER2+ mBC treatments. In addition, the model predicted a better efficacy of the new TKI plus ADC combination which can potentially reduce drug dosage and toxicity, while it also shed light on the optimal treatment ordering of ADC versus TKI plus capecitabine regimens, and these findings were validated by new in vivo experiments. Our model is the first that mechanistically integrates multiple key drug modalities in HER2+ mBC research and it can serve as a high-throughput computational platform to guide future model-informed drug development and clinical translation.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Farmacologia em Rede , Modelos Biológicos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Camundongos , Linhagem Celular Tumoral , Metástase Neoplásica
7.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1966-1973, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812209

RESUMO

This study took Chinese patent medicine for children included in Chinese Pharmacopoeia(2020 edition and the first supplement), Medicine Catalogue for National Basic Medical Insurance, Work Injury Insurance, and Maternity Insurance(2022 edition), and National Essential Medicines List(2018 edition) as the research objects, so as to sort out the distribution situation, characteristics, and the problems of Chinese patent medicine for children(including child-specific medicines, common medicines for children and adults, and discretionary medicines for children). According to statistics and summary, Chinese patent medicine for children is mainly administered orally, and the dosage forms are mostly traditional dosage forms, such as tablets, granules, capsules, and oral liquids, with mostly bitter or sweet taste. Diseases are mainly classified into pulmonary diseases and spleen and stomach diseases, and varieties of medication without Children's medication safety information or "still unclear" account for a relatively large proportion of the medicines. There are relatively few varieties of Chinese patent medicines for children, poor compliance of child-specific medication, lack of refinement of Chinese patent medicines for children dosage, and lack of information about safe use of medication. It is recommended to update and improve the instruction manuals in a timely manner, develop new varieties of Chinese patent medicine for children, and actively carry out post-marketing evaluation and clinical comprehensive evaluation of Chinese patent medicine for children, so as to provide a reference for the supplement and improvement of the instructions, the comprehensive improvement, the formulation of the catalogue, and the research and development of new Chinese patent medicine for children and ensure the use of medicines for children.


Assuntos
Medicamentos de Ervas Chinesas , Humanos , Criança , China , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos sem Prescrição , Medicina Tradicional Chinesa , Pré-Escolar , Lactente , Adolescente
8.
J Am Chem Soc ; 145(32): 17588-17596, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37454391

RESUMO

Organic dyes as non-noble metal photosensitizers have attracted increasing attention due to their environmental friendliness and sustainability but suffer from fast deactivation and low stability. Here, we reported a fruitful strategy by the confinement and stabilization of visible light-active signal unit organic dyes within the metal-organic frameworks (MOFs) and developed a series of heterogeneous photocatalysts dye@UiO-66s [dye = fluorescein (FL)/rhodamine B (RhB)/eosin Y (EY), UiO-66s = UiO-66, and Bim-UiO-66]. It has been demonstrated that the encapsulated dyes can effectively sensitize MOF hosts and dominate the band structures and photocatalytic activities of dye@UiO-66s regardless of the ligand functionalization of MOFs. Photocatalytic experiments showed that these dye@UiO-66s exhibit enhanced activities relative to free dyes and among them, FL@Bim-UiO-66 displays excellent efficiencies toward the green synthesis of new carbon-bridged annulations, [1,2,5]thiadiazole[3,4-g]benzoimidazoles in the yield of up to 98% at room temperature with outstanding stability and reusability. Furthermore, the intramolecular cyclization intermediate was captured and characterized by the single-crystal X-ray diffraction analysis.

9.
BMC Med ; 21(1): 250, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37424013

RESUMO

BACKGROUND: Inflammation has been implicated in the pathology of schizophrenia and may cause neuronal cell death and dendrite loss. Neuroimaging studies have highlighted longitudinal brain structural changes in patients with schizophrenia, yet it is unclear whether this is related to inflammation. We aim to address this question, by relating brain structural changes with the transcriptional profile of inflammation markers in the early stage of schizophrenia. METHODS: Thirty-eight patients with first-episode schizophrenia and 51 healthy controls were included. High-resolution T1-weighted magnetic resonance imaging (MRI) and clinical assessments were performed at baseline and 2 ~ 6 months follow-up for all subjects. Changes in the brain structure were analyzed using surface-based morphological analysis and correlated with the expression of immune cells-related gene sets of interest reported by previous reviews. Transcriptional data were retrieved from the Allen Human Brain Atlas. Furthermore, we examined the brain structural changes and peripheral inflammation markers in association with behavioral symptoms and cognitive functioning in patients. RESULTS: Patients exhibited accelerated cortical thickness decrease in the left frontal cortices, less decrease or an increase in the superior parietal lobule and right lateral occipital lobe, and increased volume in the bilateral pallidum, compared with controls. Changes in cortical thickness correlated with the transcriptional level of monocyte across cortical regions in patients (r = 0.54, p < 0.01), but not in controls (r = - 0.05, p = 0.76). In addition, cortical thickness change in the left superior parietal lobule positively correlated with changes in digital span-backward test scores in patients. CONCLUSIONS: Patients with schizophrenia exhibit regional-specific cortical thickness changes in the prefrontal and parietooccipital cortices, which is related to their cognitive impairment. Inflammation may be an important factor contributing to cortical thinning in first-episode schizophrenia. Our findings suggest that the immunity-brain-behavior association may play a crucial role in the pathogenesis of schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Córtex Cerebral/patologia
10.
Small ; : e2306763, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095451

RESUMO

All-solid-state batteries employing sulfide solid electrolyte and Li metal anode are promising because of their high safety and energy densities. However, the interface between Li metal and sulfides suffers from catastrophic instability which stems the practical use. Here, a dynamically stable sulfide electrolyte architecture to construct the hierarchy of interface stability is reported. By rationally designing the multilayer structures of sulfide electrolytes, the dynamic decomposing-alloying process from MS4 (M = Ge or Sn) unit in sulfide interlayer can significantly prohibit Li dendrite penetration is revealed. The abundance of highly electronic insulating decompositions, such as Li2 S, at the sulfide interlayer interface helps to well constrain the dynamic decomposition process and preserve the long-term polarization stability is also highlighted. By using Li6 PS5 Cl||Li10 SnP2 S12 ||Li6 PS5 Cl electrolyte architecture, Li metal anode shows an unprecedented critical current density over 3 mA cm-2 and achieves the steady over-potential for ≈900 hours. Based upon the merits, the Li||LiNi0.8 Co0.1 Mn0.1 O2 battery delivers a remarkable 75.3% retention even after 600 cycles at 1 C (1C-0.95 mA cm-2 ) under a low stack pressure of 15 MPa.

11.
FASEB J ; 36(11): e22599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36250902

RESUMO

Emerging evidence suggest that C3aR plays important roles in homeostasis, host defense and disease. Although it is known that C3aR is protective in several models of acute bacterial infections, the role for C3aR in chronic infection is largely unknown. Here we show that C3aR is protective in experimental chronic pyelonephritis. Global C3aR deficient (C3ar-/- ) mice had higher renal bacterial load, more pronounced renal histological lesions, increased renal apoptotic cell accumulation, tissue inflammation and extracellular matrix deposition following renal infection with uropathogenic E. coli (UPEC) strain IH11128, compared to WT control mice. Myeloid C3aR deficient (Lyz2-C3ar-/- ) mice exhibited a similar disease phenotype to global C3ar-/- mice. Pharmacological treatment with a C3aR agonist reduced disease severity in experimental chronic pyelonephritis. Furthermore, macrophages of C3ar-/- mice exhibited impaired ability to phagocytose UPEC. Our data clearly demonstrate a protective role for C3aR against experimental chronic pyelonephritis, macrophage C3aR plays a major role in the protection, and C3aR is necessary for phagocytosis of UPEC by macrophages. Our observation that C3aR agonist curtailed the pathology suggests a therapeutic potential for activation of C3aR in chronic infection.


Assuntos
Infecções por Escherichia coli , Pielonefrite , Receptores de Complemento , Animais , Camundongos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Rim/microbiologia , Rim/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Pielonefrite/imunologia , Pielonefrite/microbiologia , Pielonefrite/patologia , Pielonefrite/prevenção & controle , Escherichia coli Uropatogênica/patogenicidade , Receptores de Complemento/agonistas , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Receptores de Complemento/imunologia , Matriz Extracelular/metabolismo
12.
Bipolar Disord ; 25(4): 289-300, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37161552

RESUMO

OBJECTIVE: Major depressive disorder (MDD) and bipolar disorder (BD) are considered whole-brain disorders with some common clinical and neurobiological features. It is important to investigate neural mechanisms to distinguish between the two disorders. However, few studies have explored the functional dysconnectivity between the two disorders from the whole brain level. METHODS: In this study, 117 patients with MDD, 65 patients with BD, and 116 healthy controls completed resting-state functional magnetic resonance imaging (R-fMRI) scans. Both edge-based network construction and large-scale network analyses were applied. RESULTS: Results found that both the BD and MDD groups showed decreased FC in the whole brain network. The shared aberrant network across patients involves the visual network (VN), sensorimotor network (SMN), dorsal attention network (DAN), and ventral attention network (VAN), which is related to the processing of external stimuli. The default mode network (DMN) and the limbic network (LN) abnormalities were only found in patients with MDD. Furthermore, results showed the highest decrease in edges of patients with MDD in between-network FC in SMN-VN, whereas in VAN-VN of patients with BD. CONCLUSIONS: Our findings indicated that both MDD and BD are extensive abnormal brain network diseases, mainly aberrant in those brain networks correlated to the processing of external stimuli, especially the attention network. Specific altered functional connectivity also was found in MDD and BD groups, respectively. These results may provide possible trait markers to distinguish the two disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
13.
Eur Radiol ; 33(5): 3354-3365, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36547676

RESUMO

OBJECTIVE: In this study, based on PET/CT radiomics features, we developed and validated a nomogram to predict progression-free survival (PFS) for cases with diffuse large B cell lymphoma (DLBCL) treated with immunochemotherapy. METHODS: This study retrospectively recruited 129 cases with DLBCL. Among them, PET/CT scans were conducted and baseline images were collected for radiomics features along with their clinicopathological features. Radiomics features related to recurrence were screened for survival analysis using univariate Cox regression analysis with p < 0.05. Next, a weighted Radiomics-score (Rad-score) was generated and independent risk factors were obtained from univariate and multivariate Cox regressions to build the nomogram. Furthermore, the nomogram was tested for their ability to predict PFS using time-dependent receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS: Blood platelet, Rad-score, and gender were included in the nomogram as independent DLBCL risk factors for PFS. We found that the training cohort areas under the curve (AUCs) were 0.79, 0.84, and 0.88, and validation cohort AUCs were 0.67, 0.83, and 0.72, respectively. Further, the DCA and calibration curves confirmed the predictive nomogram's clinical relevance. CONCLUSION: Using Rad-score, blood platelet, and gender of the DLBCL patients, a PET/CT radiomics-based nomogram was developed to guide cases' recurrence risk assessment prior to treatment. The developed nomogram can help provide more appropriate treatment plans to the cases. KEY POINTS: • DLBCL cases can be classified into low- and high-risk groups using PET/CT radiomics based Rad-score. • When combined with other clinical characteristics (gender and blood platelet count), Rad-score can be used to predict the outcome of the pretreatment of DLBCL cases with a certain degree of accuracy. • A prognostic nomogram was established in this study in order to aid in assessing prognostic risk and providing more accurate treatment plans for DLBCL cases.


Assuntos
Linfoma Difuso de Grandes Células B , Nomogramas , Humanos , Prognóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/farmacologia , Estudos Retrospectivos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem
14.
Inorg Chem ; 62(42): 17182-17190, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37815498

RESUMO

Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic (H2L), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural 1-Co/1-Zn with Co2/Zn2 units, and 2-Gd/2-Tb with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O2-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that 1-Zn can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.

15.
Genet Sel Evol ; 55(1): 46, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407918

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are an effective way to explore genotype-phenotype associations in humans, animals, and plants. Various GWAS methods have been developed based on different genetic or statistical assumptions. However, no single method is optimal for all traits and, for many traits, the putative single nucleotide polymorphisms (SNPs) that are detected by the different methods do not entirely overlap due to the diversity of the genetic architecture of complex traits. Therefore, multi-tool-based GWAS strategies that combine different methods have been increasingly employed. To take this one step further, we propose an ensemble-like GWAS strategy (E-GWAS) that statistically integrates GWAS results from different single GWAS methods. RESULTS: E-GWAS was compared with various single GWAS methods using simulated phenotype traits with different genetic architectures. E-GWAS performed stably across traits with different genetic architectures and effectively controlled the number of false positive genetic variants detected without decreasing the number of true positive variants. In addition, its performance could be further improved by using a bin-merged strategy and the addition of more distinct single GWAS methods. Our results show that the numbers of true and false positive SNPs detected by the E-GWAS strategy slightly increased and decreased, respectively, with increasing bin size and when the number and the diversity of individual GWAS methods that were integrated in E-GWAS increased, the latter being more effective than the bin-merged strategy. The E-GWAS strategy was also applied to a real dataset to study backfat thickness in a pig population, and 10 candidate genes related to this trait and expressed in adipose-associated tissues were identified. CONCLUSIONS: Using both simulated and real datasets, we show that E-GWAS is a reliable and robust strategy that effectively integrates the GWAS results of different methods and reduces the number of false positive SNPs without decreasing that of true positive SNPs.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Animais , Suínos , Estudo de Associação Genômica Ampla/métodos , Estudos de Associação Genética , Fenótipo
16.
Phys Chem Chem Phys ; 25(46): 31747-31753, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964736

RESUMO

Intrinsic one-dimensional (1D) helix chain materials are extremely rare in inorganic chemistry due to their novel structural features and complex syntheses. Herein, we report a class of inborn 1D helix chains, namely 1D SbSX (X = Cl, Br, I), that can exist stably. Through ab initio calculations, we demonstrate that the formation of this helical feature is facilitated by the lone pairs in antimony atoms. Owing to the different chemical bonds induced by the lone pairs, a phase transition between different helix chain phases can occur by applying extra elongation strain. More importantly, 1D SbSX helix chains possess superior flexibility. Under large elongation strains, the elastic energy is stored via bond angle redistributions, while the average bond lengths can remain invariant. Our work not only enriches the family of intrinsic 1D helical materials, but also provides a novel avenue for the diversification of low-dimensional phase change and flexible materials.

17.
Exp Cell Res ; 411(1): 112983, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921827

RESUMO

After the severe initial insults of acute kidney injury, progressive kidney tubulointerstitial fibrosis may occur, the peritubular capillary (PTC) rarefaction plays a key role in the disease progression. However, the mechanisms of PTC damage were not fully understood and potential therapeutic interventions were not explored. Previous studies of our research team and others in this field suggested that bone marrow-derived mesenchymal stem cells (BMSCs) transplanted into the AKI rat model may preserve the kidney function and pathological changes. In the current study, with the ischemia/reperfusion AKI rat model, we revealed that BMSCs transplantation attenuated the renal function decrease in the AKI model through preserving the peritubular capillaries (PTCs) function. The density of PTCs is maintained by BMSCs transplantation in the AKI model, detachment and relocation of pericytes in the PTCs diminished. Then we established that BMSCs transplantation may attenuate the renal fibrosis and preserve the kidney function after AKI by repairing the PTCs. Improving the vitality of pericytes, suppressing the detachment and trans-differentiation of pericytes, directly differentiation of BMSCs into pericytes by BMSCs transplantation all participate in the PTC repair. Through these processes, BMSCs rescued the microvascular damage and improved the density of PTCs. As a result, a preliminary conclusion can be reached that BMSCs transplantation can be an effective therapy for delaying renal fibrosis after AKI.


Assuntos
Injúria Renal Aguda/complicações , Endotélio Vascular/citologia , Fibrose/terapia , Nefropatias/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Pericitos/citologia , Animais , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Ratos , Ratos Sprague-Dawley
18.
BMC Psychiatry ; 23(1): 526, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479996

RESUMO

BACKGROUND: Cognitive impairment is the main factor in the poor prognosis of schizophrenia, but its mechanism remains unclear. The inferior parietal lobule (IPL) is related to various clinical symptoms and cognitive impairment in schizophrenia. We aimed to explore the relationship between IPL-related functions and cognitive impairment in schizophrenia. METHODS: 136 schizophrenia patients and 146 demographically matched healthy controls were enrolled for a cross-sectional study. High-spatial-resolution structural and resting-state functional images were acquired to demonstrate the alternations of brain structure and function. At the same time, the digit span and digit symbol coding tasks of the Chinese Wechsler Adult Intelligence Test Revised (WAIS-RC) were utilized in assessing the subjects' cognitive function. Patients were divided into cognitive impairment and normal cognitive groups according to their cognitive score and then compared whether there were differences between the three groups in fractional amplitude of low-frequency fluctuation (fALFF). In addition, we did a correlation analysis between cognitive function and the fALFF for the left IPL of patients and healthy controls. Based on the Allen Human Brain Atlas, we obtained genes expressed in the left IPL, which were then intersected with the transcriptome-wide association study results and differentially expressed genes in schizophrenia. RESULTS: Grouping of patients by the backward digit span task and the digit symbol coding task showed differences in fALFF values between healthy controls and cognitive impairment patients (P < 0.05). We found a negative correlation between the backward digit span task score and fALFF of the left IPL in healthy controls (r = - 0.388, P = 0.003), which was not seen in patients (r = 0.203, P = 0.020). In addition, none of the other analyses were statistically significant (P > 0.017). In addition, we found that diacylglycerol kinase ζ (DGKζ) is differentially expressed in the left IPL and associated with schizophrenia. CONCLUSION: Our study demonstrates that the left IPL plays a vital role in cognitive impairment in schizophrenia. DGKζ may act as an essential regulator in the left IPL of schizophrenia patients with cognitive impairment.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Adulto , Humanos , Disfunção Cognitiva/complicações , Estudos Transversais , Diacilglicerol Quinase , Lobo Parietal , Esquizofrenia/complicações
19.
J Nanobiotechnology ; 21(1): 341, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736726

RESUMO

Osteoarthritis (OA) is a degenerative joint disease involving cartilage. Exosomes derived from Mesenchymal stem cells (MSCs) therapy improves articular cartilage repair, but subcutaneous fat (SC) stromal cells derived exosomes (MSCsSC-Exos), especially engineering MSCsSC-Exos for drug delivery have been rarely reported in OA therapy. This objective of this study was to clarify the underlying mechanism of MSCsSC-Exos on cartilage repair and therapy of engineering MSCsSC-Exos for drug delivery in OA. MSCsSC-Exos could ameliorate the pathological severity degree of cartilage via miR-199a-3p, a novel molecular highly enriched in MSCsSC-Exos, which could mediate the mTOR-autophagy pathway in OA rat model. Intra-articular injection of antagomiR-199a-3p dramatically attenuated the protective effect of MSCsSC-Exos-mediated on articular cartilage in vivo. Furthermore, to achieve the superior therapeutic effects of MSCsSC-Exos on injured cartilage, engineering exosomes derived from MSCsSC as the chondrocyte-targeting miR-199a-3p delivery vehicles were investigated in vitro and in vivo. The chondrocyte-binding peptide (CAP) binding MSCsSC-Exos could particularly deliver miR-199a-3p into the chondrocytes in vitro and into deep articular tissues in vivo, then exert the excellent protective effect on injured cartilage in DMM-induced OA mice. As it is feasible to obtain human subcutaneous fat from healthy donors by liposuction operation in clinic, meanwhile engineering MSCsSC-Exos to realize targeted delivery of miR-199a-3p into chondrocytes exerted excellent therapeutic effects in OA animal model in vivo. Through combining MSCsSC-Exos therapy and miRNA therapy via an engineering approach, we develop an efficient MSCsSC-Exos-based strategy for OA therapy and promote the application of targeted-MSCsSC-Exos for drug delivery in the future.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Humanos , Animais , Camundongos , Ratos , MicroRNAs/genética , Gordura Subcutânea , Osteoartrite/terapia
20.
Neoplasma ; 70(1): 123-135, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916928

RESUMO

Since metastasis remains the primary reason for colorectal cancer (CRC) associated death, a better understanding of the molecular mechanism underlying CRC metastasis is urgently needed. Here, we elucidated the role of Cathepsin C (CTSC) in promoting CRC metastasis. The expression of CTSC was detected by real-time PCR and immunohistochemistry in the human CRC cohort. The metastatic capacities of CTSC-mediated metastasis were analyzed by in vivo metastasis model. Elevated CSTC expression was positively associated with tumor differentiation, tumor invasion, lymph node metastasis, and AJCC stage and indicated poor prognosis in human CRC. CTSC overexpression in CRC cells promoted myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) recruitment by the CSF1/CSF1R axis. In contrast, the knockdown of CSF1 reduced CTSC-mediated MDSCs and TAMs infiltration and CRC metastasis. Depletion of either MDSCs or TAMs decreased CTSC-mediated CRC metastasis. In human CRC tissues, CTSC expression was positively associated with intratumoral MDSCs and TAMs infiltration. Furthermore, the combination of CTSC inhibitor AZD7986 and anti-PD-L1 antibody blocked CTSC-induced CRC metastasis. CTSC overexpression promoted MDSCs and TAMs infiltration by CSF1/CSF1R axis. Interruption of this oncogenic loop may provide a promising treatment strategy for inhibiting CTSC-driven CRC metastasis.


Assuntos
Catepsina C , Neoplasias Colorretais , Humanos , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Metástase Linfática , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA