Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0139223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38363111

RESUMO

Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.


Assuntos
Anseriformes , Fator B de Elongação Transcricional Positiva , Proteínas de Ligação a RNA , Fatores de Transcrição , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcrição Viral , Animais
2.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265705

RESUMO

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

3.
J Am Chem Soc ; 146(10): 6628-6637, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38359144

RESUMO

Currently, the desired research focus in energy storage technique innovation has been gradually shifted to next-generation aqueous batteries holding both high performance and sustainability. However, aqueous Zn-I2 batteries have been deemed to have great sustainable potential, owing to the merits of cost-effective and eco-friendly nature. However, their commercial application is hindered by the serious shuttle effect of polyiodides during reversible operations. In this work, a Janus functional binder based on chitosan (CTS) molecules was designed and prepared; the polar terminational groups impart excellent mechanical robustness to hybrid binders; meanwhile, it can also deliver isochronous enhancement on physical adsorption and redox kinetics toward I2 species. By feat of highly effective remission to shuttle effect, the CTS cell exhibits superb electrochemical storage capacities with long-term robustness, specifically, 144.1 mAh g-1, at a current density of 0.2 mA g-1 after 1500 cycles. Simultaneously, the undesired self-discharging issue could be also well-addressed; the Coulombic efficiency could remain at 98.8 % after resting for 24 h. More importantly, CTS molecules endow good biodegradability and reusable properties; after iodine species were reloaded, the recycled devices could also deliver specific capacities of 73.3 mAh g-1, over 1000 cycles. This Janus binder provides a potential synchronous solution to realize high comprehensive performance with high iodine utilization and further make it possible for sustainable Zn-I2 batteries.

4.
J Am Chem Soc ; 146(11): 7295-7304, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38364093

RESUMO

All-weather operation is considered an ultimate pursuit of the practical development of sodium-ion batteries (SIBs), however, blocked by a lack of suitable electrolytes at present. Herein, by introducing synergistic manipulation mechanisms driven by phosphorus/silicon involvement, the compact electrode/electrolyte interphases are endowed with improved interfacial Na-ion transport kinetics and desirable structural/thermal stability. Therefore, the modified carbonate-based electrolyte successfully enables all-weather adaptability for long-term operation over a wide temperature range. As a verification, the half-cells using the designed electrolyte operate stably over a temperature range of -25 to 75 °C, accompanied by a capacity retention rate exceeding 70% even after 1700 cycles at 60 °C. More importantly, the full cells assembled with Na3V2(PO4)2O2F cathode and hard carbon anode also have excellent cycling stability, exceeding 500 and 1000 cycles at -25 to 50 °C and superb temperature adaptability during all-weather dynamic testing with continuous temperature change. In short, this work proposes an advanced interfacial regulation strategy targeted at the all-climate SIB operation, which is of good practicability and reference significance.

5.
J Virol ; 97(1): e0157722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598202

RESUMO

Duck plague virus (DPV) is a high-morbidity fowl alphaherpesvirus that causes septicemic lesions in various organs. Most DPV genes are conserved among herpesviruses, while a few are specific to fowl herpesviruses, including the LORF3 gene, for which there is currently no literature describing its biological properties and functions. This study first addressed whether the LORF3 protein is expressed by making specific polyclonal antibodies. We could demonstrate that DPV LORF3 is an early gene and encodes a protein involved in virion assembly, mainly localized in the nucleus of DPV-infected DEF cells. To investigate the role of this novel LORF3 protein in DPV pathogenesis, we generated a recombinant virus that lacks expression of the LORF3 protein. Our data revealed that the LORF3 protein is not essential for viral replication but contributes to DPV replication in vitro and in vivo and promotes duck plague disease morbidity and mortality. Interestingly, deletion of the LORF3 protein abolished thymus atrophy in DPV-vaccinated ducks. In conclusion, this study revealed the expression of avian herpesviruses-specific genes and unraveled the role of the early protein LORF3 in the pathogenesis of DPV. IMPORTANCE DPV is a highly lethal alphaherpesvirus that causes duck plague in birds of the order Anseriformes. The virus has caused huge economic losses to the poultry industry due to high morbidity and mortality and the cost of vaccination. DPV encodes 78 open reading frames (ORFs), and these genes are involved in various processes of the viral life cycle. Functional characterization of DPV genes is important for understanding the complex viral life cycle and DPV pathogenesis. Here, we identified a novel protein encoded by LORF3, and our data suggest that the LORF3 protein is involved in the occurrence and development of duck plague.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Animais , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/patogenicidade , Patos , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Células Cultivadas
6.
Angew Chem Int Ed Engl ; 63(30): e202402371, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38763920

RESUMO

2D compounds exfoliated from weakly bonded bulk materials with van der Waals (vdW) interaction are easily accessible. However, the strong internal ionic/covalent bonding of most inorganic crystal frameworks greatly hinders 2D material exfoliation. Herein, we first proposed a radical/strain-synergistic strategy to exfoliate non-vdW interacting pseudo-layered phosphate framework. Specifically, hydroxyl radicals (⋅OH) distort the covalent bond irreversibly, meanwhile, H2O molecules as solvents, further accelerating interlayered ionic bond breakage but mechanical expansion. The innovative 2D laminar NASICON-type Na3V2(PO4)2O2F crystal, exfoliated by ⋅OH/H2O synergistic strategy, exhibits enhanced sodium-ion storage capacity, high-rate performance (85.7 mAh g-1 at 20 C), cyclic life (2300 cycles), and ion migration rates, compared with the bulk framework. Importantly, this chemical/physical dual driving technique realized the effective exfoliation for strongly coupled pseudo-layered frameworks, which accelerates 2D functional material development.

7.
Chemistry ; 29(6): e202202723, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36250748

RESUMO

Covalent organic frameworks (COFs) have received increased interest in recent years as an advanced class of materials. By virtue of the available monomers, multiple conformations and various linkages, COFs offer a wide range of opportunities for complex structural design and specific functional development of materials, which has facilitated the widespread application in many fields, including multi-valent metal ion batteries (MVMIBs), described as the attractive candidate replacing lithium-ion batteries (LIBs). With their robust skeletons, diverse pores, flexible structures and abundant functional groups, COFs are expected to help realize a high performance MVMIBs. In this review, we present an overview of COFs, describe advances in topology design and synthetic reactions, and study the application of COFs in MVMIBs, as well as discuss challenges and solutions in the preparation of COFs electrodes, in the hope of providing constructive insights into the future direction of COFs.

8.
Vet Res ; 54(1): 5, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703166

RESUMO

Duck hepatitis A virus type 1 (DHAV-1) is an acute, highly lethal infectious agent that infects ducklings and causes up to 95% mortality in ducklings up to 1 week of age, posing a significant economic threat to the duck farming industry. Previous studies have found that the proteolytic enzyme 3 C encoded by DHAV-1 can inhibit the IRF7 protein from blocking the upstream signaling pathway of the type I interferon to promote viral replication. However, there are still few studies on the mechanism of DHAV-1 in immune evasion. Here, we demonstrate that the DHAV-1 3CD protein can interact with IRF7 protein and reduce IRF7 protein expression without directly affecting IRF7 protein nuclear translocation. Further studies showed that the 3CD protein could reduce the expression of RIG-I protein without affecting its transcription level. Furthermore, we found that the 3CD protein interacted with the N-terminal structural domain of RIG-I protein, interfered with the interaction between RIG-I and MAVS, and degraded RIG-I protein through the proteasomal degradation pathway, thereby inhibiting its mediated antiviral innate immunity to promote DHAV-1 replication. These data suggest a novel immune evasion mechanism of DHAV-1 mediated by the 3CD protein, and the results of this experiment are expected to improve the understanding of the biological functions of the viral precursor protein and provide scientific data to elucidate the mechanism of DHAV-1 infection and pathogenesis.


Assuntos
Vírus da Hepatite do Pato , Interferon Tipo I , Animais , Imunidade Inata , Transdução de Sinais , Proteínas Virais , Patos
9.
Nanotechnology ; 34(20)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745917

RESUMO

With the rapid development of sodium-ion batteries (SIBs), it is urgent to exploit the cathode materials with good rate capability, attractive high energy density and considerable long cycle performance. Na3V2(PO4)3(NVP), as a NASICON-type electrode material, is one of the cathode materials with great potential for application because of its good thermal stability and stable. However, NVP has the inherent problem of low electronic conductivity, and various strategies are proposed to improve it, moreover, nanotechnology or nanostructure are involved in these strategies, the construction of nanostructured active particles and nanocomposites with conductive carbon networks have been shown to be effective in improving the electrical conductivity of NVP. Herein, we review the research progress of NVP performance improvement strategies from the perspective of nanostructures and classifies the prepared nanomaterials according to their different nano-dimension. In addition, NVP nanocomposites are reviewed in terms of both preparation methods and promotion effects, and examples of NVP nanocomposites at different nano-dimension are given. Finally, some personal views are presented to provide reasonable guidance for the research and design of high-performance polyanionic cathode materials of SIBs.

10.
Geriatr Nurs ; 51: 54-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893611

RESUMO

OBJECTIVE: The aim of this review was to evaluate the overall diagnostic performance of e-devices for detection of health problems in older adults at home. METHODS: A systematic review was conducted following the PRISMA-DTA guidelines. RESULTS: 31 studies were included with 24 studies included in meta-analysis. The included studies were divided into four categories according to the signals detected: physical activity (PA), vital signs (VS), electrocardiography (ECG) and other. The meta-analysis showed the pooled estimates of sensitivity and specificity were 0.94 and 0.98 respectively in the 'VS' group. The pooled sensitivity and specificity were 0.97 and 0.98 respectively in the 'ECG' group. CONCLUSIONS: All kinds of e-devices perform well in diagnosing the common health problems. While ECG-based health problems detection system is more reliable than VS-based ones. For sole signal detection system has limitation in diagnosing specific health problems, more researches should focus on developing new systems combined of multiple signals.


Assuntos
Exercício Físico , Humanos , Idoso , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA