Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 122(1): 50-131, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34816723

RESUMO

Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.


Assuntos
Óxidos , Semicondutores , Eletrodos , Eletrônica , Metais/química , Óxidos/química
2.
Small ; 19(26): e2206791, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37010037

RESUMO

2D materials with atomic thickness display strong gate controllability and emerge as promising materials to build area-efficient electronic circuits. However, achieving the effective and nondestructive modulation of carrier density/type in 2D materials is still challenging because the introduction of dopants will greatly degrade the carrier transport via Coulomb scattering. Here, a strategy to control the polarity of tungsten diselenide (WSe2 ) field-effect transistors (FETs) via introducing hexagonal boron nitride (h-BN) as the interfacial dielectric layer is devised. By modulating the h-BN thickness, the carrier type of WSe2 FETs has been switched from hole to electron. The ultrathin body of WSe2 , combined with the effective polarity control, together contribute to the versatile single-transistor logic gates, including NOR, AND, and XNOR gates, and the operation of only two transistors as a half adder in logic circuits. Compared with the use of 12 transistors based on static Si CMOS technology, the transistor number of the half adder is reduced by 83.3%. The unique carrier modulation approach has general applicability toward 2D logic gates and circuits for the improvement of area efficiency in logic computation.

3.
Nanotechnology ; 34(29)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37075709

RESUMO

The performance of the Graphene/Si (Gr/Si) Schottky interface and its potential in future electronics strongly rely on the quality of interconnecting contacts with external circuitry. In this work, we investigate the dominating and limiting factors of Gr/Si interfaces designed for high light absorption, paying particular attention to the nature of the contact failure under high electrostatic discharge (ESD) conditions. Our findings indicate that severe current crowding at contact edges of the graphene is the dominating factor for the device breakdown. Material degradation and electrical breakdown are systematically analyzed by atomic force, Raman, scanning electron, and energy-dispersive x-ray spectroscopies. This work enlists the robustness and limitations of Gr/Si junction in photodiode architecture under high ESD conditions that can be used as general guidelines for 2D-3D electronic and optoelectronic devices.

4.
Chem Soc Rev ; 47(17): 6845-6888, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30043037

RESUMO

Two-dimensional (2D) semiconductors, such as ultrathin layers of transition metal dichalcogenides (TMDs), offer a unique combination of electronic, optical and mechanical properties, and hold potential to enable a host of new device applications spanning from flexible/wearable (opto)electronics to energy-harvesting and sensing technologies. A critical requirement for developing practical and reliable electronic devices based on semiconducting TMDs consists in achieving a full control over their charge-carrier polarity and doping. Inconveniently, such a challenging task cannot be accomplished by means of well-established doping techniques (e.g. ion implantation and diffusion), which unavoidably damage the 2D crystals resulting in degraded device performances. Nowadays, a number of alternatives are being investigated, including various (supra)molecular chemistry approaches relying on the combination of 2D semiconductors with electroactive donor/acceptor molecules. As yet, a large variety of molecular systems have been utilized for functionalizing 2D TMDs via both covalent and non-covalent interactions. Such research endeavours enabled not only the tuning of the charge-carrier doping but also the engineering of the optical, electronic, magnetic, thermal and sensing properties of semiconducting TMDs for specific device applications. Here, we will review the most enlightening recent advancements in experimental (supra)molecular chemistry methods for tailoring the properties of atomically-thin TMDs - in the form of substrate-supported or solution-dispersed nanosheets - and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and devices based on 2D semiconductors and molecular systems.

5.
Genes Chromosomes Cancer ; 53(4): 289-98, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24449147

RESUMO

Adenocarcinoma is the most common type of lung cancer. Somatic mutations in the early stage of this disease have a tight relationship with tumor initiation and potentially activate downstream pathways that are implicated in tumor progression. In this study, we performed whole genome and exome sequencing of tumor and adjacent normal tissue from 10 patients with stage I lung adenocarcinoma. EGFR (4/10 tumors), BCHE (3/10), and TP53 (2/10) were identified recurrently with validated tumor-specific non-synonymous mutations; and the remaining mutations were specific to individual tumors. Computational methods were used to evaluate the potential effect of non-synonymous mutations on protein function, and putative driver mutation in genes such as SDK1 was predicted. Cell adhesion was the most enriched biological process in gene set analysis using the DAVID database. Copy number amplification at 12q15, which includes MDM2, was identified as a recurrent somatic alteration in 4 of 10 tumors. These findings provided additional information for understanding early-stage lung adenocarcinomas.


Assuntos
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Cromossomos Humanos Par 12/genética , Exoma , Feminino , Dosagem de Genes , Genoma Humano , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Análise de Sequência de DNA
6.
Gut ; 63(11): 1700-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24522499

RESUMO

BACKGROUND: Oesophageal cancer is one of the most deadly forms of cancer worldwide. Long non-coding RNAs (lncRNAs) are often found to have important regulatory roles. OBJECTIVE: To assess the lncRNA expression profile of oesophageal squamous cell carcinoma (OSCC) and identify prognosis-related lncRNAs. METHOD: LncRNA expression profiles were studied by microarray in paired tumour and normal tissues from 119 patients with OSCC and validated by qRT-PCR. The 119 patients were divided randomly into training (n=60) and test (n=59) groups. A prognostic signature was developed from the training group using a random Forest supervised classification algorithm and a nearest shrunken centroid algorithm, then validated in a test group and further, in an independent cohort (n=60). The independence of the signature in survival prediction was evaluated by multivariable Cox regression analysis. RESULTS: LncRNAs showed significantly altered expression in OSCC tissues. From the training group, we identified a three-lncRNA signature (including the lncRNAs ENST00000435885.1, XLOC_013014 and ENST00000547963.1) which classified the patients into two groups with significantly different overall survival (median survival 19.2 months vs >60 months, p<0.0001). The signature was applied to the test group (median survival 21.5 months vs >60 months, p=0.0030) and independent cohort (median survival 25.8 months vs >48 months, p=0.0187) and showed similar prognostic values in both. Multivariable Cox regression analysis showed that the signature was an independent prognostic factor for patients with OSCC. Stratified analysis suggested that the signature was prognostic within clinical stages. CONCLUSIONS: Our results suggest that the three-lncRNA signature is a new biomarker for the prognosis of patients with OSCC, enabling more accurate prediction of survival.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Transcriptoma/fisiologia
7.
Small ; 10(22): 4521-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25207987

RESUMO

Two-dimensional materials provide an ideal platform for studying the fundamental properties of atomic-level thickness systems, and are appropriate for lots of engineering applications in various fields. Although 2D materials are the thinnest membranes, they have been revealed to have high impermeability even to the smallest molecule. By the virtue of this high impermeability of the 2D materials in combination with their other unique properties, 2D materials open up a variety of applications that are impossible for conventional membranes. In this review, the latest applications based on high impermeability and selective permeation of these 2D material membranes are overviewed for different fields, including environmental control, chemical engineering, electronic devices, and biosensors. The working mechanism for each kind of application is described in detail. A summary and outlook is then provided on the challenges and new directions in this emerging research field.


Assuntos
Membranas Artificiais , Permeabilidade
8.
Adv Sci (Weinh) ; : e2403043, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810136

RESUMO

The optoelectronic resistive random-access memory (RRAM) with the integrated function of perception, storage and intrinsic randomness displays promising applications in the hardware level in-sensor image cryptography. In this work, 2D hexagonal boron nitride based optoelectronic RRAM is fabricated with semitransparent noble metal (Ag or Au) as top electrodes, which can simultaneous capture color image and generate physically unclonable function (PUF) key for in-sensor color image cryptography. Surface plasmons of noble metals enable the strong light absorption to realize an efficient modulation of filament growth at nanoscale. Resistive switching curves show that the optical stimuli can impede the filament aggregation and promote the filament annihilation, which originates from photothermal effects and photogenerated hot electrons in localized surface plasmon resonance of noble metals. By selecting noble metals, the optoelectronic RRAM array can respond to distinct wavelengths and mimic the biological dichromatic cone cells to perform the color perception. Due to the intrinsic and high-quality randomness, the optoelectronic RRAM can produce a PUF key in every exposure cycle, which can be applied in the reconfigurable cryptography. The findings demonstrate an effective strategy to build optoelectronic RRAM for in-sensor color image cryptography applications.

9.
Nanoscale ; 15(9): 4309-4316, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756937

RESUMO

Two-dimensional (2D) materials have become potential resistive switching (RS) layers to prepare emerging non-volatile memristors. The atomically thin thickness and the highly controllable defect density contribute to the construction of ultimately scaled memory cells with stable switching behaviors. Although the conductive bridge random-access memory based on 2D hexagonal boron nitride has been widely studied, the realization of RS completely relying on vacancies in 2D materials has performance superiority. Here, we synthesize carbon-doped h-BN (C-h-BN) with a certain number of defects by controlling the weight percentage of carbon powder in the source. These defects can form a vacancy-based conductive filament under an applied electric field. The memristor displays bipolar non-volatile memory with a low SET voltage of 0.85 V and shows a long retention time of up to 104 s at 120 °C. The response times of the SET and RESET process are less than 80 ns and 240 ns, respectively. The current mapping by conductive atomic force microscopy demonstrates the electric-field-induced current tunneling from defective sites of the C-h-BN flake, revealing the defect-based RS in the C-h-BN memristor. Moreover, C-h-BN with excellent flexibility can be applied to wearable devices, maintaining stable RS performance in a variety of bending environments and after multiple bending cycles. The vacancy-based 2D memristor provides a new strategy for developing ultra-scaled memory units with high controllability.

10.
Nanomaterials (Basel) ; 12(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364620

RESUMO

Two-dimensional (2D) semiconductors have been considered as promising candidates to fabricate ultimately scaled field-effect transistors (FETs), due to the atomically thin thickness and high carrier mobility. However, the performance of FETs based on 2D semiconductors has been limited by extrinsic factors, including high contact resistance, strong interfacial scattering, and unintentional doping. Among these challenges, contact resistance is a dominant issue, and important progress has been made in recent years. In this review, the Schottky-Mott model is introduced to show the ideal Schottky barrier, and we further discuss the contribution of the Fermi-level pinning effect to the high contact resistance in 2D semiconductor devices. In 2D FETs, Fermi-level pinning is attributed to the high-energy metal deposition process, which would damage the lattice of atomically thin 2D semiconductors and induce the pinning of the metal Fermi level. Then, two contact structures and the strategies to fabricate low-contact-resistance short-channel 2D FETs are introduced. Finally, our review provides practical guidelines for the realization of high-performance 2D-semiconductors-based FETs with low contact resistance and discusses the outlook of this field.

11.
Adv Mater ; 34(12): e2109445, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35061928

RESUMO

The fabrication of high-performance (opto-)electronic devices based on 2D channel materials requires the optimization of the charge injection at electrode-semiconductor interfaces. While chemical functionalization with chemisorbed self-assembled monolayers has been extensively exploited to adjust the work function of metallic electrodes in bottom-contact devices, such a strategy has not been demonstrated for the top-contact configuration, despite the latter being known to offer enhanced charge-injection characteristics. Here, a novel contact engineering method is developed to functionalize gold electrodes in top-contact field-effect transistors (FETs) via the transfer of chemically pre-modified electrodes. The source and drain Au electrodes of the molybdenum disulfide (MoS2 ) FETs are functionalized with thiolated molecules possessing different dipole moments. While the modification of the electrodes with electron-donating molecules yields a marked improvement of device performance, the asymmetric functionalization of the source and drain electrodes with different molecules with opposed dipole moment enables the fabrication of a high-performance Schottky diode with a rectification ratio of ≈103 . This unprecedented strategy to tune the charge injection in top-contact MoS2 FETs is of general applicability for the fabrication of high-performance (opto-)electronic devices, in which asymmetric charge injection is required, enabling tailoring of the device characteristics on demand.

12.
ACS Appl Mater Interfaces ; 14(31): 35917-35926, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882423

RESUMO

Brain-inspired intelligent systems demand diverse neuromorphic devices beyond simple functionalities. Merging biomimetic sensing with weight-updating capabilities in artificial synaptic devices represents one of the key research focuses. Here, we report a multiresponsive synapse device that integrates synaptic and optical-sensing functions. The device adopts vertically stacked graphene/h-BN/WSe2 heterostructures, including an ultrahigh-mobility readout layer, a weight-control layer, and a dual-stimuli-responsive layer. The unique structure endows synapse devices with excellent synaptic plasticity, short response time (3 µs), and excellent optical responsivity (105 A/W). To demonstrate the application in neuromorphic computing, handwritten digit recognition was simulated based on an unsupervised spiking neural network (SNN) with a precision of 90.89%, well comparable with the state-of-the-art results. Furthermore, multiterminal neuromorphic devices are demonstrated to mimic dendritic integration and photoswitching logic. Different from other synaptic devices, the research work validates multifunctional integration in synaptic devices, supporting the potential fusion of sensing and self-learning in neuromorphic networks.


Assuntos
Redes Neurais de Computação , Sinapses , Biomimética , Aprendizagem , Plasticidade Neuronal , Sinapses/fisiologia
13.
Nat Commun ; 13(1): 510, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082288

RESUMO

The electronic properties of two-dimensional semiconductors can be strongly modulated by interfacing them with atomically precise self-assembled molecular lattices, yielding hybrid van der Waals heterostructures (vdWHs). While proof-of-concepts exploited molecular assemblies held together by lateral unspecific van der Waals interactions, the use of 2D supramolecular networks relying on specific non-covalent forces is still unexplored. Herein, prototypical hydrogen-bonded 2D networks of cyanuric acid (CA) and melamine (M) are self-assembled onto MoS2 and WSe2 forming hybrid organic/inorganic vdWHs. The charge carrier density of monolayer MoS2 exhibits an exponential increase with the decreasing area occupied by the CA·M unit cell, in a cooperatively amplified process, reaching 2.7 × 1013 cm-2 and thereby demonstrating strong n-doping. When the 2D CA·M network is used as buffer layer, a stark enhancement in the catalytic activity of monolayer MoS2 for hydrogen evolution reactions is observed, outperforming the platinum (Pt) catalyst via gate modulation.

14.
Adv Mater ; 34(51): e2207371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36217845

RESUMO

Brain-inspired neuromorphic computing systems with the potential to drive the next wave of artificial intelligence demand a spectrum of critical components beyond simple characteristics. An emerging research trend is to achieve advanced functions with ultracompact neuromorphic devices. In this work, a single-transistor neuron is demonstrated that implements excitatory-inhibitory (E-I) spatiotemporal integration and a series of essential neuron behaviors. Neuronal oscillations, the fundamental mode of neuronal communication, that construct high-dimensional population code to achieve efficient computing in the brain, can also be demonstrated by the neuron transistors. The highly scalable E-I neuron can be the basic building block for implementing core neuronal circuit motifs and large-scale architectural plans to replicate energy-efficient neural computations, forming the foundation of future integrated neuromorphic systems.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Neurônios
15.
ACS Nano ; 16(12): 20647-20655, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36455073

RESUMO

Two-dimensional (2D) materials with the atomically thin thickness have attracted great interest in the post-Moore's Law era because of their tremendous potential to continue transistor downscaling and offered advances in device performance at the atomic limit. However, the metal-semiconductor contact is the bottleneck in field-effect transistors (FETs) integrating 2D semiconductors as channel materials. A robust and tunable doping method at the source and drain region of 2D transistors to minimize the contact resistance is highly sought after. Here we report a stable carrier doping method via the mild covalent grafting of maleimides on the surface of 2D transition metal dichalcogenides. The chemisorbed interaction contributes to the efficient carrier doping without degrading the high-performance carrier transport. Density functional theory results further illustrate that the molecular functionalization leads to the mild hybridization and the negligible impact on the conduction bands of monolayer MoS2, avoiding the random scattering from the dopants. Differently from reported molecular treatments, our strategy displays high thermal stability (above 300 °C) and it is compatible with micro/nano processing technology. The contact resistance of MoS2 FETs can be greatly reduced by ∼12 times after molecular functionalization. The Schottky barrier of 44 meV is achieved on monolayer MoS2 FETs, demonstrating efficient charge injection between metal and 2D semiconductor. The mild covalent functionalization of molecules on 2D semiconductors represents a powerful strategy to perform the carrier doping and the device optimization.

16.
Adv Mater ; 32(19): e2000740, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239571

RESUMO

As Moore's law is running to its physical limit, tomorrow's electronic systems can be leveraged to a higher value by integrating "More than Moore" technologies into CMOS digital circuits. The hybrid heterostructure composed of two-dimensional (2D) semiconductors and molecular materials represents a powerful strategy to confer new properties to the former components, realize stimuli-responsive functional devices, and enable diversification in "More than Moore" technologies. Here, an ionic liquid (IL) gated 2D MoS2 field-effect transistor (FET) with molecular functionalization is fabricated. The suitably designed ferrocene-substituted alkanethiol molecules not only improve the FET performance, but also show reversible electrochemical switching on the surface of MoS2 . Field-effect mobility of monolayer MoS2 reaches values as high as ≈116 cm2 V-1 s-1 with Ion /Ioff ratio exceeding 105 . Molecules in their neutral or charged state impose distinct doping effect, efficiently tuning the electron density in monolayer MoS2 . It is noteworthy that the joint doping effect from IL and switchable molecules results in the steep subthreshold swing of MoS2 FET in the backward sweep. These results demonstrate that the device architecture represents an unprecedented and powerful strategy to fabricate switchable 2D FET with a chemically programmed electrochemical signal as a remote control, paving the road toward novel functional devices.

17.
Sci Bull (Beijing) ; 65(17): 1451-1459, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36747402

RESUMO

The atomic structure of quasi one-dimensional (1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-dimensional (2D) layered materials and 1D nanotube/nanowire array. Here we present our studies on quasi 1D gold selenide (AuSe) that possesses highly anisotropic crystal structure, excellent electrical conductivity, giant magnetoresistance, and unusual reentrant metallic behavior. The low in-plane symmetry of AuSe gives rise to its high anisotropy of vibrational behavior. In contrast, quasi 1D AuSe exhibits high in-plane electrical conductivity along the directions of both atomic chains and perpendicular one, which can be understood as a result of strong interchain interaction. We found that AuSe exhibits a near quadratic nonsaturating giant magnetoresistance of 1841% with the magnetic field perpendicular to its in-plane. We also observe unusual reentrant metallic behavior, which is caused by the carrier mismatch in the multiband transport. Our works help to establish fundamental understandings on quasi 1D van der Waals semimetallic AuSe and identify it as a new candidate for exploring giant magnetoresistance and compensated semimetals.

19.
ACS Nano ; 13(4): 4814-4825, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30917275

RESUMO

Stimuli-responsive hybrid van der Waals heterostructures (vdWHs), composed of organic molecular switches superimposed on inorganic 2D materials (2DMs), can combine the outstanding physical properties of the latter components with the virtually infinite variety of tunable functionality of molecules, thereby offering an efficient protocol for the development of high-performance multifunctional materials and devices. The use of light as a remote control to modulate the properties of semiconducting 2DMs when interfaced with photochromic molecules suffers from both the limitation associated with the persistent photoconductivity characterizing the 2DMs and the finite thermal stability of the photochromic molecule in its different states. Here, we have devised a universal approach toward the fabrication of optically switchable electronic devices comprising a few nanometers thick azobenzene (AZO) layer physisorbed on 2D semiconductors supported on a trap-free polymer dielectric. The joint effect of the improved 2D/dielectric interface, the molecule's light-modulated dipolar doping, and the high thermal stability of cis-AZO offers the highest control over the reversible and efficient charge carrier tuning in 2D semiconductors with a preserved high performance in 2D field-effect transistors, as quantified in terms of carrier mobility and Ion/ Ioff ratio. The device has the potential to operate as an optical memory with four current levels and long retention time (>15 h). Furthermore, by using a CMOS-compatible micropatterning process, the photoswitchable resistor-diode transition has been achieved on hybrid lateral heterojunction devices. Our approach is of general applicability toward the generation of high-performance hybrid vdWHs for the emergence of functional and responsive devices.

20.
Adv Mater ; 31(39): e1903402, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31402543

RESUMO

The controlled functionalization of semiconducting 2D materials (2DMs) with photoresponsive molecules enables the generation of novel hybrid structures as active components for the fabrication of high-performance multifunctional field-effect transistors (FETs) and memories. This study reports the realization of optically switchable FETs by decorating the surface of the semiconducting 2DMs such as WSe2 and black phosphorus with suitably designed diarylethene (DAE) molecules to modulate their electron and hole transport, respectively, without sacrificing their pristine electrical performance. The efficient and reversible photochemical isomerization of the DAEs between the open and the closed isomer, featuring different energy levels, makes it possible to generate photoswitchable charge trapping levels, resulting in the tuning of charge transport through the 2DMs by alternating illumination with UV and visible light. The device reveals excellent data-retention capacity combined with multiple and well-distinguished accessible current levels, paving the way for its use as an active element in multilevel memories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA