RESUMO
Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.
Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioblastoma , Janus Quinase 3 , Pirimidinas , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Pirimidinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Janus Quinase 3/metabolismo , Janus Quinase 3/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , PiperidinasRESUMO
BACKGROUND: Scoparone, the principal natural active ingredient of Artemisia capillaries (Yin Chen), can effectively treat cholestatic diseases, but the pharmacokinetic properties of scoparone are rarely studied in intrahepatic cholestatic rats. OBJECTIVE: A sensitive and rapid LC-MS/MS method was established to detect scoparone and its metabolite of scopoletin in rat plasma and then compare their plasma pharmacokinetic differences between the normal and ANITinduced cholestasis rats. METHODS: Positive ionization was used to separate scoparone and scopoletin using acetonitrile and 0.1 % formic acid water as the mobile phase on a Hypersil ODS-BP column. RESULTS: The calibration curves presented good linearity (R=0.9983 and 0.9989) in the concentration range of 10- 10000 ng/mL and 0.5-500 ng/mL for scoparone and scopoletin, respectively. The precision of ≤ 9.4% and the accuracy ranged from -6.4% to 6.8% were recorded over three validation runs, and the recovery was higher than 83.9%. Under different storage conditions, scoparone and scopoletin were stable. Therefore, we studied the pharmacokinetic properties of scoparone and scopoletin in rats after a single oral administration with the above method. According to the results, the pharmacokinetic parameters of AUC, t1/2, and Cmax values of scoparone in the ANIT group were increased by 106%, 75%, and 44%, respectively, while these values of scopoletin were increased by 142%, 62%, and 65%. CONCLUSION: The findings indicated that the pharmacokinetic properties of scoparone and scopoletin were significantly different between the normal and ANIT-induced cholestasis rats, which suggested that the clinical application dosage of scoparone should be adjusted according to the liver function of patients.