Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
AAPS PharmSciTech ; 22(1): 22, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389222

RESUMO

Novel cationic lipid-based liposomes prepared using an amphiphilic cationic lipid material, N,N-dimethyl-(N',N'-di-stearoyl-1-ethyl)1,3-diaminopropane (DMSP), have been proposed to enhance the transfection of nucleic acids. Herein, we designed and investigated liposomes prepared using DMSP, soybean phosphatidylcholine, and cholesterol. This novel gene vector has high gene loading capabilities and excellent protection against nuclease degradation. An in vitro study showed that the liposomes had lower toxicity and superior cellular uptake and transfection efficiency compared with Lipofectamine 2000. An endosomal escape study revealed that the liposomes demonstrated high endosomal escape and released their genetic payload in the cytoplasm efficiently. Mechanistic studies indicated that the liposome/nucleic acid complexes entered cells through energy-dependent endocytosis that was mediated by fossa proteins. These results suggest that such cationic lipid-based liposome vectors have potential for clinical gene delivery.


Assuntos
Técnicas de Transferência de Genes , Lipossomos/metabolismo , Animais , Cátions , Colesterol/metabolismo , Endossomos/metabolismo , Humanos , Lipídeos/química
2.
ACS Appl Mater Interfaces ; 14(4): 6071-6082, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061365

RESUMO

Ice readily sheds from weak oil-swollen polymer gels but tends to adhere to mechanically robust coatings. This paper reports bilayer coatings that simultaneously possess high bulk hardness but low ice adhesion. These coatings are prepared by cocuring a triisocyanate, P#'-g-PDMS [a methacrylate polyol bearing poly(dimethylsiloxane) (PDMS) side chains with # being 1, 2, or 3 and g denoting graft], and optionally a methacrylate polyol P#. The self-assembly of the system during coating formation yields a PDMS brush layer on the surface of the cross-linked polyurethane matrix. After the surface PDMS layer is lubricated with a silicone oil, this coating exhibits an ice adhesion τ that is 10 000-fold lower than that of a triisocyanate/P# coating. Ice slides under its own weight on such a coating at a tilt angle of 3°. Yet, the coating matrix is harder than poly(ethylene terephthalate), a widely used plastic. Additionally, such a coating maintains its low τ values for more than 10 consecutive icing/deicing cycles. Subsequent increases in τ are reversed by allowing time for the replenishment of the depleted surface lubricant with that released from the coating matrix. This design opens the door for effective yet hard ice-shedding polymer coatings.

3.
ACS Appl Mater Interfaces ; 12(13): 15686-15694, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32141286

RESUMO

Size-selective membranes have applications in water purification and other areas. Although many methods have been developed for the fabrication of nanoporous membranes, each method has its limitations. For example, thin films containing uniform nanochannels can be prepared from block copolymer precursors. However, block copolymers are expensive. The electrospinning of a polymer solution can yield long nanofibers that fold into mats and the diameters of these fibers can be tuned from nanometers to micrometers. Infusing another polymer into the voids between these fibers and subsequently removing the nanofiber template should yield an inverse porous membrane, complementary in pore structure to the original nanofiber mat membrane. In this paper, we report on the fabrication of these membranes. We discovered that the flux across such membranes increased by thermally annealing the nanofiber mats under pressure before the infusion of the second polymer and by etching the surfaces of the final membrane with plasma to expose the encapsulated nanochannels. We further discovered that the size of the pores formed at the junction of the fused nanofibers and, eventually, the nanotubes governed the size selectivity of the final membrane. The pore size at the junctions increased by increasing the thermal annealing temperature and, thus, the extent of fiber fusion. The developed methodology is general and should be useful for the fabrication of nanoporous membranes from different materials possessing pore diameters that are governed by the diameter of the templating nanofibers and the extent of their fusion.

4.
Int J Nanomedicine ; 15: 3539-3550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547012

RESUMO

BACKGROUND: Methotrexate (MTX) is an antiproliferative drug widely used to treat inflammatory diseases and autoimmune diseases. The application of percutaneous administration is hindered due to its poor transdermal penetration. To reduce side effects and enhanced percutaneous delivery of MTX, novel methotrexate (MTX)-loaded micelles prepared with a amphiphilic cationic material, N,N-dimethyl-(N',N'-di-stearoyl-1-ethyl)1,3-diaminopropane (DMSAP), was designed. MATERIALS AND METHODS: DMSAP was synthesized via three steps using simple chemical agents. H nuclear magnetic resonance and mass spectroscopy were used to confirm the successful synthesis of DMSAP. A safe and non-toxic phosphatidylcholine, soybean phosphatidylcholine (SPC), was added to DMSAP at different ratios to form P/D-micelles. Then, MTX-entrapped micelles (M/P/D-micelles) were prepared by electrostatic adsorption. The physicochemical properties and blood stability of micelles were examined thoroughly. In addition, the transdermal potential of the micelles was evaluated by permeation experiments. RESULTS: In aqueous environments, DMSAP conjugates could self-assemble spontaneously into micelles with a low critical micelle concentration (CMC) of 0.056 mg/mL. Stable, spherical MTX-entrapped micelles (M/P/D-micelles) with a size of 100-120 nm and high zeta potential of +36.26 mV were prepared. In vitro permeation studies showed that M/P/D-micelles exhibited superior skin permeability and deposition of MTX in the epidermis and dermis compared with that of free MTX. CONCLUSION: These special novel cationic M/P/D-micelles can enhance the permeability of MTX and are expected to be a promising percutaneous delivery system for therapy skin diseases.


Assuntos
Metotrexato/administração & dosagem , Micelas , Administração Cutânea , Animais , Cátions , Bovinos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Metotrexato/química , Camundongos , Concentração Osmolar , Tamanho da Partícula , Fosfatidilcolinas/química , Espectroscopia de Prótons por Ressonância Magnética , Soroalbumina Bovina/química , Pele/efeitos dos fármacos , Eletricidade Estática
5.
Int J Nanomedicine ; 11: 5485-5496, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799771

RESUMO

A novel cationic cholesterol derivative-based small interfering RNA (siRNA) interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl)-N, N-dimethylamine (DMAPA-chems) liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100-200 nm and zeta potentials of 40-50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells.


Assuntos
Colesterol/análogos & derivados , Técnicas de Transferência de Genes , Lipossomos/química , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/genética , Receptor Notch1/genética , Apoptose/genética , Arsenicais/química , Cátions , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Feminino , Inativação Gênica , Terapia Genética/métodos , Humanos , Nanopartículas , Neoplasias Ovarianas/genética , Tamanho da Partícula , RNA Interferente Pequeno/metabolismo , Receptor Notch1/metabolismo , Soro/química , Transfecção
6.
Free Radic Biol Med ; 78: 190-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463279

RESUMO

Proinflammatory cytokine TNF-α-induced adhesion of leukocytes to endothelial cells plays a critical role in the early stage of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Thus, compounds that mediate intracellular redox status and regulate transcription factors are of great therapeutic interest. Clematichinenoside (AR), a triterpene saponin isolated from the root of Clematis chinensis Osbeck, was previously demonstrated to have anti-inflammatory and antioxidative properties. However, little is known about the exact mechanism underlying these actions. Thus we performed a detailed study on its effect on leukocytes-endothelial cells adhesion with TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) and cell-free systems. First, we found that AR reduced TNF-α-induced VCAM-1 and ICAM-1 expression and their promoter activity, inhibited translocation of p65 and phosphorylation of IκBα, suppressed IκB kinase-ß (IKK-ß) activity, lowered O2(∙-) and H2O2 levels, tackled p47(phox) translocation, and decreased NOX4 NADPH oxidase expression. Second, we showed that AR exhibited no direct free radical scavenging ability in cell-free systems at concentrations that were used in intact cells. Besides, AR had no direct effect on the activity of IKK-ß that was extracted from TNF-α-stimulated HUVECs. We also found that p47 translocation, NOX4 expression, and reactive oxygen species (ROS) levels were up-regulated before IκB phosphorylation in TNF-α-induced HUVECs. Moreover, TNF-α-enhanced IKK-ß activity was also inhibited by (polyethylene glycol) PEG-catalase, N-acetylcysteine (NAC), and vitamin E. In conclusion, these results suggest that AR reduces VCAM-1 and ICAM-1 expression through NADPH oxidase-dependent IKK/NF-κB pathways in TNF-α-induced HUVECs, which finally suppress monocyte-HUVECs adhesion. This compound is potentially beneficial for early-stage atherosclerosis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Quinase I-kappa B/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Saponinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Western Blotting , Adesão Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Imunoprecipitação , Molécula 1 de Adesão Intercelular/genética , Leucócitos/citologia , Leucócitos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , NADPH Oxidases/genética , NF-kappa B/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA