Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(4): 919-940, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38180963

RESUMO

Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Homeostase , Dedos de Zinco , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 35(9): 3604-3625, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37325884

RESUMO

Catalase (CAT) is often phosphorylated and activated by protein kinases to maintain hydrogen peroxide (H2O2) homeostasis and protect cells against stresses, but whether and how CAT is switched off by protein phosphatases remains inconclusive. Here, we identified a manganese (Mn2+)-dependent protein phosphatase, which we named PHOSPHATASE OF CATALASE 1 (PC1), from rice (Oryza sativa L.) that negatively regulates salt and oxidative stress tolerance. PC1 specifically dephosphorylates CatC at Ser-9 to inhibit its tetramerization and thus activity in the peroxisome. PC1 overexpressing lines exhibited hypersensitivity to salt and oxidative stresses with a lower phospho-serine level of CATs. Phosphatase activity and seminal root growth assays indicated that PC1 promotes growth and plays a vital role during the transition from salt stress to normal growth conditions. Our findings demonstrate that PC1 acts as a molecular switch to dephosphorylate and deactivate CatC and negatively regulate H2O2 homeostasis and salt tolerance in rice. Moreover, knockout of PC1 not only improved H2O2-scavenging capacity and salt tolerance but also limited rice grain yield loss under salt stress conditions. Together, these results shed light on the mechanisms that switch off CAT and provide a strategy for breeding highly salt-tolerant rice.


Assuntos
Oryza , Catalase/genética , Catalase/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Fosfatase 1/metabolismo , Tolerância ao Sal/genética , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Genomics ; 116(5): 110924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178996

RESUMO

The first dikaryotic genome of Ganoderma cultivar Zizhi S2 (56.76 Mb, 16,681 genes) has been sequenced recently. 98.15% of complete BUSCOs were recovered in this genome assembly and high-confidence annotation rate improved to 91.41%. Collinearity analysis displayed the nuclear genome were 80.2% and 93.84% similar to reference genome of G. sinense at nucleotide and amino acid levels, which presented 8,521 core genes and 880 unique orthologous gene groups. Among that, at least six functional genes (tef1-α, ß-tubulin, rpb2, CaM, Mn-SOD and VeA) and a newly discovered fip gene were highly similar 99.27% ∼100% to those in reference genome. And the mt-LSU, mt-SSU and 13 PCGs in their mitogenome were also highly conserved with 99.27%-99.87% and 99.08%-100% identity, respectively. So that, this cultivar Zizhi S2 is confirmed conspecific with Ganoderma sinense (NCBI: txid1077348). The new fip gene (MN635280.1_336bp) existing a novel mutation which can be reflected on the phylogenetic tree and 3-dimensional model topology structure.


Assuntos
Ganoderma , Filogenia , Ganoderma/genética , Genômica , Genoma Fúngico , Proteínas Fúngicas/genética
4.
Nano Lett ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833670

RESUMO

Bismuth-based chalcogenides have emerged as promising candidates for next-generation, solution-processable semiconductors, mainly benefiting from their facile fabrication, low cost, excellent stability, and tunable optoelectronic properties. Particularly, the recently developed AgBiS2 solar cells have shown striking power conversion efficiencies. High performance bismuth-based photodetectors have also been extensively studied in the past few years. However, the fundamental properties of these Bi-based semiconductors have not been sufficiently investigated, which is crucial for further improving the device performance. Here, we introduce multiple time-resolved and steady-state techniques to fully characterize the charge carrier dynamics and charge transport of solution-processed Bi-based nanocrystals. It was found that the Ag-Bi ratio plays a critical role in charge transport. For Ag-deficient samples, silver bismuth sulfide thin films behave as localized state induced hopping charge transport, and the Ag-excess samples present band-like charge transport. This finding is crucial for developing more efficient Bi-based semiconductors and optoelectronic devices.

5.
Phys Rev Lett ; 133(14): 140402, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39423392

RESUMO

High-order topological phases of matter refer to the systems of n-dimensional bulk with the topology of m-th order, exhibiting (n-m)-dimensional boundary modes and can be characterized by topological pumping. Here, we experimentally demonstrate two types of second-order topological pumps, forming four 0-dimensional corner localized states on a 4×4 square lattice array of 16 superconducting qubits. The initial ground state of the system at half-filling, as a product of four identical entangled 4-qubit states, is prepared using an adiabatic scheme. During the pumping procedure, we adiabatically modulate the superlattice Bose-Hubbard Hamiltonian by precisely controlling both the hopping strengths and on-site potentials. At the half pumping period, the system evolves to a corner-localized state in a quadrupole configuration. The robustness of the second-order topological pump is also investigated by introducing different on-site disorder. Our Letter studies the topological properties of high-order topological phases from the dynamical transport picture using superconducting qubits, which would inspire further research on high-order topological phases.

6.
Nitric Oxide ; 152: 78-89, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39305980

RESUMO

BACKGROUND: Under normal circumstances, high-density lipoprotein (HDL) is considered to have cardiovascular protective effects, but the impact of oxidized HDL (ox-HDL) on vascular endothelial function remains poorly understood. Mitochondrial function is closely related to endothelial function, and hydrogen sulfide (H2S) is a gas with endothelial protective properties. The novel hydrogen sulfide donor AP39 can target mitochondria to release H2S, but the combined effects of ox-HDL and AP39 on vascular endothelium are not well studied. METHODS: We established a cell model of ox-HDL-induced endothelial cell damage and mitochondrial dysfunction using human umbilical vein endothelial cells (HUVECs) and conducted AP39 pretreatment. The experiments confirmed the functional damage and mitochondrial dysfunction in HUVECs caused by ox-HDL. Additionally, to further explore the role of SIRT1 in AS, we analyzed SIRT1 expression in AS carotid artery tissue. This included the analysis of differentially expressed genes from AS-related datasets, presented through volcano plots and heatmaps, with enrichment analysis of downregulated genes in KEGG pathways and GO functions. Furthermore, we evaluated the differences in SIRT1 expression in coronary arteries with varying degrees of stenosis and in early and late-stage AS carotid artery tissues, and analyzed data from SIRT1 knockout mouse models. RESULTS: The experimental results indicate that AP39 effectively alleviated ox-HDL-induced endothelial cell damage and mitochondrial dysfunction by upregulating SIRT1 expression. MTT and CCK-8 assays showed that ox-HDL treatment led to decreased cell viability and proliferation in HUVECs, reduced eNOS expression, and significantly increased levels of ICAM-1, IL-6, and TNF-α, along with enhanced monocyte adhesion. These findings reveal the damaging effects of ox-HDL on HUVECs. Transcriptomic data indicated that while SIRT1 expression did not significantly differ in coronary arteries with varying degrees of stenosis, it was notably downregulated in AS carotid artery tissues, especially in late-stage AS tissues. KEGG pathway enrichment analysis revealed that SIRT1 downregulated genes were associated with processes such as vascular smooth muscle contraction, while GO analysis showed that these downregulated genes were involved in muscle system processes and muscle contraction functions, further confirming SIRT1's critical role in AS pathology. In transcriptomic data from the SIRT1 knockout mouse model, elevated levels of inflammation-related proteins IL-6 and TNF-α were observed after SIRT1 knockout, along with decreased expression of the chaperone protein PGC-1α. The expression of mitochondrial-related functional proteins Nrf2 and PGC-1α was positively correlated with SIRT1 expression, while inflammation-related proteins ICAM-1, IL-6, IL-20, and TNF-α were negatively correlated with SIRT1 expression. We further discovered that ox-HDL triggered mitochondrial dysfunction, as evidenced by reduced expression of Mfn2, Nrf2, PGC1-α, UCP-1, and SIRT1, corroborating the results from the previous database analysis. Additionally, mitochondrial dysfunction was characterized by decreased mitochondrial membrane potential (MMP), increased mitochondrial ROS levels, and reduced ATP content, further impacting cellular energy metabolism and respiratory function. Subsequent experimental results showed that the addition of AP39 mitigated these adverse effects, as evidenced by decreased levels of ICAM-1, IL-6, and TNF-α, increased eNOS expression, reduced monocyte adhesion, increased mitochondrial H2S content, and upregulated expression of SIRT1 protein associated with mitochondrial function, reduced ROS levels, and increased ATP content. Furthermore, validation experiments using the SIRT1 inhibitor EX527 confirmed that AP39 alleviated ox-HDL-induced endothelial cell damage and mitochondrial dysfunction by upregulating SIRT1 expression. CONCLUSION: Ox-HDL can induce damage and mitochondrial dysfunction in HUVECs, while AP39 inhibits ox-HDL-induced endothelial cell damage and mitochondrial dysfunction by upregulating SIRT1.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Sulfeto de Hidrogênio , Lipoproteínas HDL , Mitocôndrias , Sirtuína 1 , Regulação para Cima , Animais , Humanos , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Lipoproteínas HDL/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Tionas , Regulação para Cima/efeitos dos fármacos
7.
BMC Infect Dis ; 24(1): 47, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177982

RESUMO

BACKGROUND: Azvudine has clinical benefits and acceptable safety against COVID-19, including in patients with comorbidities, but there is a lack of available data for its use in older adult patients. This study explored the effectiveness and safety of azvudine in older adults with mild or moderate COVID-19. METHODS: This retrospective cohort study included patients aged ≥80 diagnosed with COVID-19 at the Central Hospital of Shaoyang between October and November 2022. According to the therapies they received, the eligible patients were divided into the azvudine, nirmatrelvir/ritonavir, and standard-of-care (SOC) groups. The outcomes were the proportion of patients progressing to severe COVID-19, time to nucleic acid negative conversion (NANC), and the 5-, 7-, 10-, and 14-day NANC rates from admission. RESULTS: The study included 55 patients treated with azvudine (n = 14), nirmatrelvir/ritonavir (n = 18), and SOC (n = 23). The median time from symptom onset to NANC of the azvudine, nirmatrelvir/ritonavir, and SOC groups was 14 (range, 6-25), 15 (range, 11-24), and 19 (range, 18-23) days, respectively. The median time from treatment initiation to NANC of the azvudine and nirmatrelvir/ritonavir groups was 8 (range, 4-20) and 9 (range, 5-16) days, respectively. The median length of hospital stay in the three groups was 10.5 (range, 5-23), 13.5 (range, 10-21), and 17 (range, 10-23) days, respectively. No treatment-related adverse events or serious adverse events were reported. CONCLUSION: Azvudine showed satisfactory effectiveness and acceptable safety in older adults with mild or moderate COVID-19. Therefore, azvudine could be a treatment option for this special patient population.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Idoso , Humanos , Antivirais/efeitos adversos , Estudos Retrospectivos , Ritonavir
8.
Phys Chem Chem Phys ; 26(15): 11611-11617, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546106

RESUMO

Many BF2 complexes of heteroaromatics are well known for their dual-state emission (DSE) properties. However, AIE and ACQ effects have also been observed in certain cases. To date, no rational explanations have been proposed for these uncommon photoluminescence (PL) behaviours. The current research prepared four BF2 complexes of N-benzoyl 2-aminobenzothiazoles with diversified photoluminescence (PL) properties as model compounds and utilized quantum chemical calculation tools to address this issue. Theoretical calculations revealed that the electron-donating groups (EDGs) at the para-position of the exocyclic phenyl ring exert significant influence on their ground-state electronic structures and vertical excitation features. Potential energy curve (PEC) analysis showed that the exocyclic phenyl ring and NMe2 could not function as effective rotors due to elevated energy barriers. Only the NPh2 of BFBB-3 could spontaneously rotate ∼60° to induce the formation of an emissive twisted intramolecular charge transfer (TICT) state. The two-channel model involving both vibronic relaxation and S0/S1 surface crossing revealed that the drastic narrowing of the S1/S0 energy gap in the region approaching minimun energy conical intersection (MECI) led to the generation of a dark state in BFBB-1. The small energy barrier to access the dark-state region makes the resulting fast internal conversion a competitive channel for excited-state deactivation. In contrast, the presence of EDGs in BFBB-2 and 4 inhibits this pathway, thereby resulting in intense fluorescence emissions in solution. In addition, crystallographic analysis illustrated that the F atoms perpendicular to the polyheterocycle promoted a slipped face-to-face packing mode and enhanced intermolecular interactions. The efficiencies of their solid-state emissions are mainly affected by the degree of π-π overlaps.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39174430

RESUMO

BACKGROUND AND AIM: The relationship between walking pace and heart failure (HF) has been recognized, yet the directionality and underlying mediating risk factors remain unclear. METHODS AND RESULTS: This study utilized bidirectional two-sample Mendelian randomization (MR) with genome-wide association studies (GWAS) summary statistics to assess the causal relationships between walking pace and HF. Additionally, we employed a two-step Multivariable Mendelian Randomization (MVMR) to explore potential mediating factors. We further validated our findings by conducting two-sample MR with another available GWAS summary data on heart failure. Results indicated that genetically predicted increases in walking pace were associated with a reduced risk of HF (odds ratio (OR), 0.589, 95% confidence interval (CI): 0.417-0.832). Among the considered mediators, the waist-to-hip ratio (WHR) accounts for the largest proportion of the effect (45.7%, 95% CI: 13.2%, 78.2%). This is followed by type 2 diabetes at 24.4% (95% CI: 6.7%, 42.0%) and triglycerides at 18.6% (95% CI: 4.5%, 32.7%). Furthermore, our findings reveal that genetically predicted HF risk (OR, 0.975, 95% CI: 0.960-0.991) is associated with a slower walking pace. Validated findings were consistent with the main results. CONCLUSIONS: In conclusion, MR analysis demonstrates that a slow walking pace is a reliable indicator of an elevated risk of HF, and the causal relationship is bidirectional. Interventions focusing on waist-to-hip ratio, type 2 diabetes, and triglycerides may provide valuable strategies for HF prevention in individuals with a slow walking pace.

10.
Nano Lett ; 23(16): 7364-7370, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37530420

RESUMO

Gallium oxide (Ga2O3) has attracted extensive attention as a potential candidate for low-dimensional metal-oxide-semiconductor field-effect transistors (MOSFETs) due to its wide bandgap, controllable doping, and low cost. The structural stability of nanoscale Ga2O3 is the key parameter for designing and constructing a MOSFET, which however remains unexplored. Using in situ transmission electron microscopy, we reveal the size-dependent phase transition of sub-2 nm Ga2O3 nanowires. Based on theoretical calculations, the transformation pathways from the initial monoclinic ß-phase to an intermediate cubic γ-phase and then back to the ß-phase have been mapped and identified as a sequence of Ga cation migrations. Our results provide fundamental insights into the Ga2O3 phase stability within the nanoscale, which is crucial for advancing the miniaturization, light weight, and integration of wide-bandgap semiconductor devices.

11.
Nano Lett ; 23(20): 9367-9374, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37807279

RESUMO

CuOx/C catalysts have been used in the selective catalytic reduction of NOx because of the exceptional low-temperature denitration (de-NOx) activity. A fundamental understanding of the reaction between CuO and C is critical for controlling the component of CuOx/C and thus optimizing the catalytic performance. In this study, a transmission electron microscope equipped with an in situ heating device was utilized to investigate the atomic-scale reaction between CuO and C. We report two reaction mechanisms relying on the volume ratio between C and CuO: (1) The reduction from CuO to Cu2O (when the ratio is < ∼31%); (2) the reduction of CuO into polycrystalline Cu (when the ratio is > ∼34%). The atomistic reduction pathway can be well interpreted by considering the diffusion of O vacancy through the first-principle calculations. The atomic-scale exploration of CuO/C offers ample prospects for the design of industrial de-NOx catalysts in the future.

12.
BMC Genomics ; 24(1): 27, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650452

RESUMO

BACKGROUND: As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS: N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS: Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Clorofila A , Nitrogênio/metabolismo , Chá/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
J Am Chem Soc ; 145(18): 10227-10235, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37074687

RESUMO

Stable metal-organic frameworks (MOFs) with mesopores (2-50 nm) are promising platforms for immobilizing nanosized functional compounds, such as metal-oxo clusters, metal-sulfide quantum dots, and coordination complexes. However, these species easily decompose under acidic conditions or high temperatures, hindering their in situ encapsulation in stable MOFs, which are usually synthesized under harsh conditions involving excess acid modulators and high temperatures. Herein, we report a route for the room-temperature and acid-modulator-free synthesis of stable mesoporous MOFs and MOF catalysts with acid-sensitive species encapsulated: (1) we initially construct a MOF template by connecting stable Zr6 clusters with labile Cu-bipyridyl moieties; (2) Cu-bipyridyl moieties are subsequently exchanged by organic linkers to afford a stable version of Zr-MOFs; (3) acid-sensitive species, including polyoxometalates (POMs), CdSeS/ZnS quantum dots, and Cu-coordination cages, can be encapsulated in situ into the MOFs during step 1. The room-temperature synthesis allows the isolation of mesoporous MOFs with 8-connected Zr6 clusters and reo topology as kinetic products, which are inaccessible by traditional solvothermal synthesis. Furthermore, acid-sensitive species remain stable, active, and locked within the frameworks during MOF synthesis. We observed high catalytic activity for VX degradation by the POM@Zr-MOF catalysts as a result of the synergy between redox-active POMs and Lewis-acidic Zr sites. The dynamic bond-directed method will accelerate the discovery of large-pore stable MOFs and offer a mild route to avoid the decomposition of catalysts during MOF synthesis.

14.
Small ; 19(21): e2206380, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828786

RESUMO

Deformation twinning merits attention because of its intrinsic importance as a mode of energy dissipation in solids. Herein, through the atomistic electron microscopy observations, the size-dependent twinning mechanisms in refractory body-centered cubic molybdenum nanocrystals (NCs) under tensile loading are shown. Two distinct twinning mechanisms involving the nucleation of coherent and inclined twin boundaries (TBs) are uncovered in NCs with smaller (diameter < ≈5 nm) and larger (diameter > ≈5 nm) diameters, respectively. Interestingly, the ultrahigh pseudo-elastic strain of ≈41% in sub-5 nm-sized crystals is achieved through the reversible twinning mechanism. A typical TB cross-transition mechanism is found to accommodate the NC re-orientation during the pseudo-elastic deformation. More importantly, the effects of different types of TBs on the electrical conductivity based on the repeatable experimental measurements and first-principles calculations are quantified. These size-dependent mechanical and electrical properties may prove essential in advancing the design of next-generation flexible nanoelectronics.

15.
Eur J Pediatr ; 182(2): 803-812, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36482090

RESUMO

The association between phthalates exposure and childhood abdominal obesity is still unclear. This study aimed to assess phthalates (PAEs) exposure level and explore the association between PAEs metabolites exposure and the risk of abdominal obesity in Chinese students aged 7-10 years. A total of 798 students aged 7-10 years were selected from the baseline survey of the cohort of Childhood Blood Pressure and Environmental Factors (CBPEF), which was established in Xiamen City, Fujian province, East China, from August to November in 2018. Urine samples were collected from these students to analyze the concentrations of seven PAEs metabolites using the method of high-performance liquid chromatography-tandem triple quadrupole mass spectrometry. Waist circumference was used to define abdominal obesity. The logistic regression model was used to analyze the association of urinary creatinine-adjusted PAEs metabolites with childhood abdominal obesity risk. The prevalence of childhood abdominal obesity is 12.0% (96/798). Apart from mono(2-ethylhexyl) phthalate (62.5% for boys and 47.0% for girls), the detection rate of the others PAEs metabolites ranged from 82.6 to 100%. Boys had higher concentrations of PAEs metabolites than girls (P < 0.05), except for monoethyl phthalate. Compared with the Q1 group of PAEs metabolites, the risk of childhood abdominal obesity increased to 429% (OR = 5.29; 95% CI: 2.09, 13.39) and 273% (OR = 3.73; 95% CI: 1.57, 8.86) for the Q4 group of monoethyl phthalate and monoisobutyl phthalate, respectively. CONCLUSION: The detection rate of PAEs metabolites is common, and the exposure level of PAEs metabolites was associated with the risk of abdominal obesity in Chinese students aged 7-10 years. WHAT IS KNOWN: • The prevalence of childhood abdominal obesity had increased sharply from 4.9% in 1993 to 17.5% in 2014 in China. More than 80% of the Chinese children and adolescents have measurable level of several PAEs metabolites in the urine. Previous studies with limited sample had explored the association between DEHP metabolites exposure and childhood abdominal obesity risk, however, the association were inconsistent. WHAT IS NEW: • The detection rate of PAEs metabolites is common among Chinese children aged 7-10 years. Boys had higher concentrations of PAEs metabolites than girls (P < 0.05), except for monoethyl phthalate. Compared with the Q1 group of PAEs metabolites, the risk of childhood abdominal obesity increased to 429% and 273% for the Q4 group of monoethyl phthalate and monoisobutyl phthalate, respectively.


Assuntos
Obesidade Infantil , Ácidos Ftálicos , Masculino , Criança , Feminino , Adolescente , Humanos , Obesidade Abdominal/diagnóstico , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/etiologia , Circunferência da Cintura , Ácidos Ftálicos/análise , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Obesidade Infantil/diagnóstico , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
16.
Diabetologia ; 65(2): 315-328, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800146

RESUMO

AIMS/HYPOTHESIS: Glycerophospholipid (GPL) perturbance was linked to the pathogenesis of diabetes in animal studies but prospective studies in humans are rare, particularly in Asians. We aimed to investigate the associations between plasma GPLs and incident diabetes and to explore effects of lifestyle on the associations in a Chinese population. METHODS: The study included 1877 community-dwelling Chinese individuals aged 50-70 years (751 men and 1126 women), free of diabetes at baseline and followed for 6 years. A total of 160 GPL species were quantified in plasma at baseline by using high-throughput targeted lipidomics. Log-Poisson regression was used to assess the associations between GPLs and incidence of diabetes. RESULTS: Over the 6 years of follow-up, 499 participants (26.6%) developed diabetes. After multivariable adjustment, eight GPLs were positively associated with incident diabetes (RRper SD 1.13-1.25; all false-discovery rate [FDR]-corrected p < 0.05), including five novel GLPs, namely phosphatidylcholines (PCs; 16:0/18:1, 18:0/16:1, 18:1/20:3), lysophosphatidylcholine (LPC; 20:3) and phosphatidylethanolamine (PE; 16:0/16:1), and three reported GPLs (PCs 16:0/16:1, 16:0/20:3 and 18:0/20:3). In network analysis, a PC-containing module was positively associated with incident diabetes (RRper SD 1.16 [95% CI 1.06, 1.26]; FDR-corrected p < 0.05). Notably, three of the diabetes-associated PCs (16:0/16:1, 16:0/18:1 and 18:0/16:1) and PE (16:0/16:1) were associated not only with fatty acids in the de novo lipogenesis (DNL) pathway, especially 16:1n-7 (Spearman correlation coefficients = 0.35-0.62, p < 0.001), but also with an unhealthy dietary pattern high in refined grains and low in fish, dairy and soy products (|factor loadings| ≥0.2). When stratified by physical activity levels, the associations of the eight GPLs and the PC module with incident diabetes were stronger in participants with lower physical activity (RRper SD 1.24-1.49, FDR-corrected p < 0.05) than in those with the median and higher physical activity levels (RRper SD 1.03-1.12, FDR-corrected p ≥ 0.05; FDR-corrected pinteraction < 0.05). CONCLUSIONS/INTERPRETATION: Eight GPLs, especially PCs associated with the DNL pathway, were positively associated with incident diabetes in a cohort of Chinese men and women. The associations were most prominent in participants with a low level of physical activity.


Assuntos
Povo Asiático/etnologia , Diabetes Mellitus/etnologia , Glicerofosfolipídeos/sangue , Estilo de Vida , Idoso , Glicemia/metabolismo , China/epidemiologia , Cromatografia Líquida , Diabetes Mellitus/sangue , Feminino , Seguimentos , Hemoglobinas Glicadas/metabolismo , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários , Espectrometria de Massas em Tandem
17.
J Neurooncol ; 158(3): 463-470, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657459

RESUMO

INTRODUCTION: Surgical resection of medulloblastoma (MB) remains a challenge. At present, a variety of tracers have been used for intraoperative tumor visualization. However, there are few reports on the intraoperative visualization of MB. Hence, we reported our experience of applying fluorescein sodium (FS) in MB surgery. METHODS: We retrospectively analyzed the clinical information of patients with MB confirmed by surgery and pathology from January 2016 to December 2020 from Sun Yat-sen University Cancer Center. A total of 62 patients were enrolled, of which 27 received intraoperative FS and 35 did not. The intraoperative dose of FS was 3 mg/kg. RESULTS: Among the 62 patients, 42 were males, and twenty were females. The age of onset in the FS group was 9.588 ± 7.322, which in the non-fluorescein sodium group was 13.469 ± 10.968, p = 0.198. We did not find significant differences in tumor location, tumor size, tumor resection, tumor histology, and preoperative symptoms (hydrocephalus, headache, vomit, balance disorder) between the groups. There was no significant difference in the postoperative symptoms (hydrocephalus, headache, vomiting, balance disorder, and cerebellar mutism). However, patients in the FS group had a relatively low incidence of balance disorder and cerebellar mutism. There was definite fluorescence of tumor in all cases of the FS group, and even the tiny metastatic lesion was visible. No case had side effects related to the use of FS. CONCLUSIONS: FS is safe and effective in MB surgery. Whether the application of FS for surgery can reduce complications remains to be studied in the future.


Assuntos
Neoplasias Cerebelares , Hidrocefalia , Meduloblastoma , Mutismo , Neoplasias Cerebelares/epidemiologia , Feminino , Fluoresceína , Cefaleia , Humanos , Hidrocefalia/complicações , Masculino , Meduloblastoma/complicações , Meduloblastoma/diagnóstico , Meduloblastoma/cirurgia , Mutismo/etiologia , Estudos Retrospectivos , Sódio
18.
Br J Nutr ; 128(4): 721-732, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34526168

RESUMO

Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40-69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29-9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.


Assuntos
Glucosamina , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Prospectivos , Fumar , Modelos de Riscos Proporcionais , Fatores de Risco
19.
Inorg Chem ; 61(14): 5465-5468, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35354284

RESUMO

The facile exfoliation of a two-dimensional metal-organic nanosheet of {[Co(HL)(H2O)(Py)3/4]·1/2H2O·DMF}n [1-Py; H3L = 5-(1H-pyrazol-4-yl)isophthalic acid and Py = pyridine] was achieved, via a molecular scalpel strategy, by weakening intermolecular forces between adjacent layers. The resulting 1-Py/KB40 (KB = Ketjen black) shows an increased oxygen evolution reaction (OER) performance with an overpotential of 370 mV at a current density of 10 mA cm-2 and a Tafel slope of 58 mV dec-1. This work sheds light on the structure-morphology-reactivity relationship of such materials in OER.

20.
Inorg Chem ; 61(46): 18335-18339, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346707

RESUMO

The generation and regulation of chirality are closely related to the origin of life. Using achiral precursors to spontaneously build chiral MOFs remains a major challenge. Here, a method to synthesize chiral MOFs from achiral precursors by utilizing chiral fragments was achieved. The transformation from chiral fragments of 1 to chiral frameworks of 2 and 3 was realized by modifying the substituents, and the enantiomer resolution of 3-P41212 and 3-P43212 was achieved by d/l camphoric acid. 3 was then further studied in applications.


Assuntos
Estruturas Metalorgânicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA