RESUMO
Precise integration of two-dimensional (2D) semiconductors and high-dielectric-constant (k) gate oxides into three-dimensional (3D) vertical-architecture arrays holds promise for developing ultrascaled transistors1-5, but has proved challenging. Here we report the epitaxial synthesis of vertically aligned arrays of 2D fin-oxide heterostructures, a new class of 3D architecture in which high-mobility 2D semiconductor fin Bi2O2Se and single-crystal high-k gate oxide Bi2SeO5 are epitaxially integrated. These 2D fin-oxide epitaxial heterostructures have atomically flat interfaces and ultrathin fin thickness down to one unit cell (1.2 nm), achieving wafer-scale, site-specific and high-density growth of mono-oriented arrays. The as-fabricated 2D fin field-effect transistors (FinFETs) based on Bi2O2Se/Bi2SeO5 epitaxial heterostructures exhibit high electron mobility (µ) up to 270 cm2 V-1 s-1, ultralow off-state current (IOFF) down to about 1 pA µm-1, high on/off current ratios (ION/IOFF) up to 108 and high on-state current (ION) up to 830 µA µm-1 at 400-nm channel length, which meet the low-power specifications projected by the International Roadmap for Devices and Systems (IRDS)6. The 2D fin-oxide epitaxial heterostructures open up new avenues for the further extension of Moore's law.
RESUMO
High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.
Assuntos
Grafite , Microscopia Crioeletrônica , Confiabilidade dos Dados , Movimento (Física)RESUMO
Cryo-electron microscopy (cryo-EM) visualizes the atomic structure of macromolecules that are embedded in vitrified thin ice at their close-to-native state. However, the homogeneity of ice thickness, a key factor to ensure high image quality, is poorly controlled during specimen preparation and has become one of the main challenges for high-resolution cryo-EM. Here we found that the uniformity of thin ice relies on the surface flatness of the supporting film, and developed a method to use ultraflat graphene (UFG) as the support for cryo-EM specimen preparation to achieve better control of vitreous ice thickness. We show that the uniform thin ice on UFG improves the image quality of vitrified specimens. Using such a method we successfully determined the three-dimensional structures of hemoglobin (64 kDa), α-fetoprotein (67 kDa) with no symmetry, and streptavidin (52 kDa) at a resolution of 3.5 Å, 2.6 Å and 2.2 Å, respectively. Furthermore, our results demonstrate the potential of UFG for the fields of cryo-electron tomography and structure-based drug discovery.
Assuntos
Grafite , Microscopia Crioeletrônica/métodos , Grafite/química , Substâncias Macromoleculares , Tomografia com Microscopia EletrônicaRESUMO
Hexagonal boron nitride (hBN) has emerged as a promising protection layer for dielectric integration in the next-generation large-scale integrated electronics. Although numerous efforts have been devoted to growing single-crystal hBN film, wafer-scale ultraflat hBN has still not been achieved. Here, we report the epitaxial growth of 4 in. ultraflat single-crystal hBN on Cu0.8Ni0.2(111)/sapphire wafers. The strong coupling between hBN and Cu0.8Ni0.2(111) suppresses the formation of wrinkles and ensures the seamless stitching of parallelly aligned hBN domains, resulting in an ultraflat single-crystal hBN film on a wafer scale. Using the ultraflat hBN as a protective layer, we integrate the wafer-scale ultrathin high-κ dielectrics onto two-dimensional (2D) materials with a damage-free interface. The obtained hBN/HfO2 composite dielectric exhibits an ultralow current leakage (2.36 × 10-6 A cm-2) and an ultrathin equivalent oxide thickness of 0.52 nm, which meets the targets of the International Roadmap for Devices and Systems. Our findings pave the way to the synthesis of ultraflat 2D materials and integration of future 2D electronics.
RESUMO
Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing in eight DDH families followed by targeted sequencing of 68 sporadic DDH patients. We identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. All patients harboring the LRP1 variants presented a typical DDH phenotype. The heterozygous Lrp1 knockout (KO) mouse (Lrp1+/-) showed phenotypes recapitulating the human DDH phenotypes, indicating Lrp1 loss of function causes DDH. Lrp1 knockin mice with a missense variant corresponding to a human variant identified in DDH (Lrp1R1783W) also presented DDH phenotypes, which were milder in heterozygotes and severer in homozygotes than those of the Lrp1 KO mouse. The timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. During the chondrogenic induction of mice bone marrow stem cells and ATDC5 (an inducible chondrogenic cell line), Lrp1 deficiency caused decreased autophagy levels with significant ß-catenin up-regulation and suppression of chondrocyte marker genes. The expression of chondrocyte markers was rescued by PNU-74654 (a ß-catenin antagonist) in an shRNA-Lrp1-expressed ATDC5 cell. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment.
Assuntos
Autofagia , Condrócitos , Displasia do Desenvolvimento do Quadril , Heterozigoto , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Autofagia/genética , Condrócitos/metabolismo , Condrócitos/patologia , Displasia do Desenvolvimento do Quadril/genética , Displasia do Desenvolvimento do Quadril/patologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , beta Catenina/metabolismoRESUMO
BACKGROUND: In epigenetic modification, histone modification and DNA methylation coordinate the regulation of spermatogonium. Not only can methylcytosine dioxygenase 1 (TET1) function as a DNA demethylase, converting 5-methylcytosine to 5-hydroxymethylcytosine, it can also form complexes with other proteins to regulate gene expression. H3K27me3, one of the common histone modifications, is involved in the regulation of stem cell maintenance and tumorigenesis by inhibiting gene transcription. METHODS: we examined JMJD3 at both mRNA and protein levels and performed Chip-seq sequencing of H3K27me3 in TET1 overexpressing cells to search for target genes and signaling pathways of its action. RESULTS: This study has found that JMJD3 plays a leading role in spermatogonia self-renewal and proliferation: at one extreme, the expression of the self-renewal gene GFRA1 and the proliferation-promoting gene PCNA was upregulated following the overexpression of JMJD3 in spermatogonia; at the other end of the spectrum, the expression of differentiation-promoting gene DAZL was down-regulated. Furthermore, the fact that TET1 and JMJD3 can form a protein complex to interact with H3K27me3 has also been fully proven. Then, through analyzing the sequencing results of CHIP-Seq, we found that TET1 targeted Pramel3 when it interacted with H3K27me3. Besides, TET1 overexpression not only reduced H3K27me3 deposition at Pramel3, but promoted its transcriptional activation as well, and the up-regulation of Pramel3 expression was verified in JMJD3-overexpressing spermatogonia. CONCLUSION: In summary, our study identified a novel link between TET1 and H3K27me3 and established a Tet1-JMJD3-H3K27me3-Pramel3 axis to regulate spermatogonia self-renewal and proliferation. Judging from the evidence offered above, we can safely conclude that this study provides new ideas for further research regarding the mechanism of spermatogenesis and spermatogenesis disorders on an apparent spectrum.
Assuntos
Histonas , Espermatogônias , Masculino , Humanos , Histonas/metabolismo , Espermatogônias/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Diferenciação Celular/genética , Proliferação de CélulasRESUMO
Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.
Assuntos
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virais , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Estrutura Quaternária de Proteína , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Microscopia Crioeletrônica , Suramina/farmacologiaRESUMO
Epidemiological studies suggest that fetal growth restriction (FGR) caused by gestational cholestasis is associated with elevated serum cholic acid (CA). Here, we explore the mechanism by which CA induces FGR. Pregnant mice except controls were orally administered with CA daily from gestational day 13 (GD13) to GD17. Results found that CA exposure decreased fetal weight and crown-rump length, and increased the incidence of FGR in a dose-dependent manner. Furthermore, CA caused placental glucocorticoid (GC) barrier dysfunction via down-regulating the protein but not the mRNA level of placental 11ß-Hydroxysteroid dehydrogenase-2 (11ß-HSD2). Additionally, CA activated placental GCN2/eIF2α pathway. GCN2iB, an inhibitor of GCN2, significantly inhibited CA-induced down-regulation of 11ß-HSD2 protein. We further found that CA caused excessive reactive oxygen species (ROS) production and oxidative stress in mouse placentas and human trophoblasts. NAC significantly rescued CA-induced placental barrier dysfunction by inhibiting activation of GCN2/eIF2α pathway and subsequent down-regulation of 11ß-HSD2 protein in placental trophoblasts. Importantly, NAC rescued CA-induced FGR in mice. Overall, our results suggest that CA exposure during late pregnancy induces placental GC barrier dysfunction and subsequent FGR may be via ROS-mediated placental GCN2/eIF2α activation. This study provides valuable insight for understanding the mechanism of cholestasis-induced placental dysfunction and subsequent FGR.
Assuntos
Doenças Placentárias , Placenta , Gravidez , Feminino , Camundongos , Humanos , Animais , Placenta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Retardo do Crescimento Fetal/induzido quimicamente , Fator de Iniciação 2 em Eucariotos/metabolismo , Doenças Placentárias/metabolismoRESUMO
Chronic diabetic wounds represent a significant clinical challenge because of impaired healing processes, which require innovative therapeutic strategies. This study explores the therapeutic efficacy of insulin-induced gene 1-induced bone marrow mesenchymal stem cell exosomes (Insig1-exos) in promoting wound healing in diabetic mice. We demonstrated that Insig1 enhanced the secretion of bone marrow mesenchymal stem cell-derived exosomes, which are enriched with miR-132-3p. Through a series of in vitro and in vivo experiments, these exosomes significantly promoted the proliferation, migration, and angiogenesis of dermal fibroblasts under high-glucose conditions. They also regulated key wound-healing factors, including matrix metalloproteinase-9, platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor-ß1, and platelet endothelial cell adhesion molecule-1, thereby accelerating wound closure in diabetic mice. Histological analysis showed that Insig1-exos were more effective in promoting epithelialization, enhancing collagen deposition, and reducing inflammation. Additionally, inhibition of miR-132-3p notably diminished these therapeutic effects, underscoring its pivotal role in the wound-healing mechanism facilitated by Insig1-exos. This study elucidates the molecular mechanisms through which Insig1-exos promotes diabetic wound healing, highlighting miR-132-3p as a key mediator. These findings provide new strategies and theoretical foundations for treating diabetes-related skin injuries.
Assuntos
Diabetes Mellitus Experimental , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Cicatrização , Animais , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Exossomos/metabolismo , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
With the development of cryo-electron microscopy (cryo-EM), high-resolution structures of macromolecules can be reconstructed by the single particle method efficiently. However, challenges may still persist during the specimen preparation stage. Specifically, proteins tend to adsorb at the air-water interface and exhibit a preferred orientation in vitreous ice. To overcome these challenges, we have explored dual-affinity graphene (DAG) modified with two different affinity ligands as a supporting material for cryo-EM sample preparation. The ligands can bind to distinct sites on the corresponding tagged particles, which in turn generates various orientation distributions of particles and prevents the adsorption of protein particles onto the air-water interface. As expected, the DAG exhibited high binding specificity and affinity to target macromolecules, resulting in more balanced particle Euler angular distributions compared to single functionalized graphene on two different protein cases, including the SARS -CoV-2 spike glycoprotein. We anticipate that the DAG grids will enable facile and efficient three-dimensional (3D) reconstruction for cryo-EM structural determination, providing a robust and general technique for future studies.
Assuntos
COVID-19 , Grafite , Humanos , Microscopia Crioeletrônica/métodos , Grafite/química , Ligantes , Água/química , Substâncias Macromoleculares/químicaRESUMO
Maternal lipopolysaccharide (LPS) exposure during pregnancy has been related to IUGR. Here, we explored whether paternal LPS exposure before mating impaired fetal development. All male mice except controls were intraperitoneally injected with LPS every other day for a total of five injections. The next day after the last LPS, male mice were mated with untreated female mice. Interestingly, fetal weight and crown-rump length were reduced, while the incidence of IUGR was increased in paternal LPS exposure group. Additionally, paternal LPS exposure leaded to poor placental development through causing cell proliferation inhibition and apoptosis. Additional experiment demonstrated that the inactivation of placental PI3K/AKT pathway might be involved in paternal LPS-induced cell proliferation inhibition and apoptosis of trophoblast cells. Furthermore, the mRNA and protein levels of mesoderm specific transcript (MEST), a maternally imprinted gene with paternal expression, were significantly decreased in mouse placentas from paternal LPS exposure. Further analysis showed that paternal LPS exposure caused the inactivation of placental PI3K/AKT pathway and then cell proliferation inhibition and apoptosis might be via down-regulating placental MEST. Overall, our results provide evidence that paternal LPS exposure causes poor placental development and subsequently IUGR may be via down-regulating MEST/PI3K/AKT pathway, and then inducing cell proliferation inhibition and apoptosis in placentas.
Assuntos
Retardo do Crescimento Fetal , Lipopolissacarídeos , Feminino , Masculino , Gravidez , Animais , Camundongos , Humanos , Retardo do Crescimento Fetal/induzido quimicamente , Lipopolissacarídeos/toxicidade , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Placenta , PlacentaçãoRESUMO
High-mobility and air-stable two-dimensional (2D) Bi2O2Se semiconductor holds promise as an alternative fast channel material for next-generation transistors. However, one of the key challenges remaining in 2D Bi2O2Se is to prepare high-quality crystals to fabricate the high-performance transistors with a high on-state current density. Here, we present the free-standing growth of strain-free 2D Bi2O2Se crystals. An ultrahigh Hall mobility of 160â¯000 cm2 V-1 s-1 is measured in strain-free Bi2O2Se crystals at 2 K, which enables the observation of Shubnikov-de Haas quantum oscillations and shows substantially higher (>4 times) mobility over previous in-plane 2D crystals. The fabricated 2D transistors feature an on-off current ratio of â¼106 and a record-high on-state current density of â¼1.33 mA µm-1, which is comparable to that of commercial Si and Ge n-type field-effect transistors (FETs) for similar channel length. Strain-free 2D Bi2O2Se provides a promising material platform for studying novel quantum phenomena and exploration of high-performance low-power electronics.
RESUMO
BACKGROUND: Early hepatocellular carcinoma (HCC) detection with non-invasive biomarkers remains an unmet clinical need. We aimed to construct a predictive model based on the pre-diagnostic levels of serum markers to predict the early-stage onset of HCC. METHODS: A total of 339 HCC patients (including 157 patients from Changzhou cohort and 182 patients from Wuxi cohort) were enrolled in our retrospective study. Levels of 25 baseline serum markers were collected. Propensity score matching (PSM) analysis was conducted to balance the distributions of patients' gender, age, and the surveillance time between HCC group and control group. Then, Receiver operating characteristic (ROC) and Logistic regression analysis were performed to screen the independent predictive variables and construct a non-invasive predictive model. Subsequently, ROC curve and Kaplan-Meier (K-M) curve were used to evaluate the predictive values of the model. Clinical net benefit of the model was demonstrated by decision curve analysis (DCA) and clinical impact curve. RESULTS: Five independent predictive variables for HCC onset and two general characteristics of patients (age and gender) were incorporated into the score model. ROC and DCA curves showed that the score model had better predictive performance in discrimination and clinical net benefit compared with single variable or other score systems, with the area under the curve (AUC) of 0.890 (95% CI 0.856-0.925) in Changzhou cohort and 0.799 (95% CI 0.751-0.849) in Wuxi cohort. Meanwhile, stratification analysis indicated that the score model had good predictive values for patients with early tumor stage (AJCC stage I) or small tumors (< 2 cm). Moreover, the score of HCC patient began to increase at 30 months before clinical diagnosis and reach a peak at 6 months. CONCLUSION: Based on this model, we could optimize the current risk stratification at an early stage and consider further intensive surveillance programs for high-risk patients. It could also help clinicians to evaluate the progression and predict the prognosis of HCC patients.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Curva ROC , Estudos RetrospectivosRESUMO
OBJECTIVES: To analyze the changes of lower limb hemodynamics parameters before and after wearing graduated compression stockings (GCS) during ankle pump exercise in patients preparing for arthroplastic surgery. METHOD: The leg veins of 16 patients awaiting arthroplasty were analyzed using a Sonosite M-Turbo ultrasound system during ankle pump exercise with or without GCS. The age of them was 70 ± 7 years (mean ± SD) (range 56-82 years) and body mass index was 25.8 ± 3.0 kg/m2 (range 18.0-30.5 kg/m2). Measured data including the cross-sectional area (CSA), anteroposterior (AP) diameter and lateromedial (LM) diameter of the soleus vein (SV), posterior tibial vein (PTV) and great saphenous vein (GSV). Additionally, the peak velocities of femoral vein (FV) were also measured. RESULTS: GCS could significantly decrease the cross-sectional area of SV, PTV and GSV in supine position at rest and maximum ankle plantar flexion. But the compression effect of GCS to SV and GSV was not observed during maximum ankle dorsiflexion. It was found that GCS application reduced the peak flow velocity of the femoral vein from 61.85 cm/s (95% CI = 50.94-72.75 cm/s) to 38.01 cm/s (95% CI = 28.42-47.59 cm/s) (P < 0.001) during ankle plantar flexion and decreased the femoral vein in these patients from 80.65 cm/s (95% CI = 70.37-90.92 cm/s) to 51.15 cm/s (95% CI = 42.58-59.73 cm/s) (P < 0.001) during ankle dorsiflexion. But this effect was not significant in supine position at rest. CONCLUSIONS: GCS could significantly reduce the peak flow velocity of the femoral vein during ankle pump exercise in the patients preparing for arthroplastic surgery.
Assuntos
Veia Femoral , Meias de Compressão , Idoso , Idoso de 80 Anos ou mais , Tornozelo/diagnóstico por imagem , Articulação do Tornozelo , Terapia por Exercício , Veia Femoral/diagnóstico por imagem , Veia Femoral/cirurgia , Humanos , Pessoa de Meia-IdadeRESUMO
The wettability of graphene is critical for numerous applications but is very sensitive to its surface cleanness. Herein, by clarifying the impact of intrinsic contamination, i.e., amorphous carbon, which is formed on the graphene surface during the high-temperature chemical vapor deposition (CVD) process, the hydrophilic nature of clean graphene grown on single-crystal Cu(111) substrate was confirmed by both experimental and theoretical studies, with an average water contact angle of â¼23°. Furthermore, the wettability of as-transferred graphene was proven to be highly dependent on its intrinsic cleanness, because of which the hydrophilic, clean graphene exhibited improved performance when utilized for cell culture and cryoelectron microscopy imaging. This work not only validates the intrinsic hydrophilic nature of graphene but also provides a new insight in developing advanced bioapplications using CVD-grown clean graphene films.
Assuntos
Grafite , Técnicas de Cultura de Células , Microscopia Crioeletrônica , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , MolhabilidadeRESUMO
Neuroinflammation is an important pathological feature and an early event in the pathogenesis of Alzheimer's disease (AD), which is characterized by activation of microglia and astrocytes. Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor that is abundantly expressed in neurons, microglia, and astrocytes, and plays a critical role in AD pathogenesis. There is increasing evidence to show that LRP1 regulates inflammatory responses by modulating the release of pro-inflammatory cytokines and phagocytosis. However, the effects of LRP1 on ß-amyloid protein (Aß)-induced microglial and astrocytic neuroinflammatory responses and its underlying mechanisms have not been studied in detail. In the present study, knockdown of LRP1 significantly enhanced Aß1-42-stimulated neuroinflammation by increasing the production of pro-inflammatory cytokines in both BV2 microglial cells and mouse primary astrocytes. Furthermore, it is revealed that LRP1 knockdown further led to the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. The phosphorylation of IκBα, p38, and JNK was significantly up-regulated in LRP1 knockdown BV2 microglial cells and primary astrocytes. Meanwhile, LRP1 knockdown increased expression of the NF-κB p65 subunit in the nucleus while decreased its expression in the cytoplasm. Besides, the upstream signaling adaptor molecules such as toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MyD88), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were also further increased. Moreover, blockade of NF-κB, p38, and JNK inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) induced by the knockdown of LRP1. Taken together, these findings indicated that LRP1 as an effective therapeutic target against AD and other neuroinflammation related diseases.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Inflamação/patologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Sistema de Sinalização das MAP Quinases , Microglia/metabolismo , NF-kappa B/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Linhagem Celular , Células Cultivadas , Citocinas/biossíntese , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Male germline stem cells (mGSCs) can transmit genetic materials to the next generation and dedifferentiate into pluripotent stem cells. However, in livestock, mGSC lines are difficult to establish, because of the factors that affect their isolation and culture. The extracellular matrix serves as a substrate for attachment and affects the fate of these stem cells. Poly-L-lysine (PL), an extracellular matrix of choice, inhibits and/or kills cancer cells, and promotes the attachment of stem cells in culture. However, how it affects the characteristics and potentials of these stem cells in culture needs to be elucidated. Here, we isolated, enriched and cultured dairy goat mGSCs on five types of extracellular matrices. To explore the best extracellular matrix to use for culturing them, the characteristics and proliferation ability of the cells were determined. Results showed that the cells shared several characteristics with previously reported mGSCs, including the poor effect of PL on their proliferative and colony-forming abilities. Further examination showed upregulation of p53 expression in these cells, which could be inhibiting their proliferation. When a p53 inhibitor was included in the culture medium, it was confirmed to be responsible for the inhibition of proliferation in mGSCs. Optimal concentration of the inhibitor in the culture of these cells was 5 µM. Furthermore, addition of the p53 inhibitor increased the expression of the markers of self-renewal and cell cycle in goat mGSCs. In summary, suppressing p53 is beneficial for the proliferation of dairy goat mGSCs, cultured on PL.
Assuntos
Técnicas de Cultura de Células/veterinária , Células Germinativas/citologia , Cabras/fisiologia , Polilisina/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Matriz Extracelular/fisiologia , Células Germinativas/efeitos dos fármacos , Masculino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Magnesium (Mg) alloys have been promised for biomedical implants in orthopedic field, however, the fast corrosion rate and mode challenge their clinical application. To push Mg alloys materials into practice, a composite coating with biodegradable and high compatible components to improve anticorrosion property of an Mg alloy (i.e., AZ31) is designed and fabricated. The inner layer is micro-nano structured Mg(OH)2 through hydrothermal treatment. Then stearic acid (SA) is introduced to modify Mg(OH)2 for better reducing the gap below a surface-degradation polymer layer of poly(1,3-trimethylene carbonate). Benefited by the SA modification effect, this sandwiched coating avoids corrosive medium penetration via enhancing the adhesion strength at the interface between outer and inner layers. Both in vitro and in vivo tests indicate that the composite coating modified AZ31 perform a better anticorrosion behavior and biocompatibility compared to bare AZ31. Strikingly, a 1.7-fold improvement in volume of newly formed bone is observed surrounding the composite coating modified implant after 12 week implantation. The sandwiched biocompatible coating strategy paves a hopeful way for future translational application of Mg alloys orthopedic materials in clinics.